Class Matrix4x3d
- java.lang.Object
-
- org.joml.Matrix4x3d
-
- All Implemented Interfaces:
java.io.Externalizable,java.io.Serializable,java.lang.Cloneable,Matrix4x3dc
- Direct Known Subclasses:
Matrix4x3dStack
public class Matrix4x3d extends java.lang.Object implements java.io.Externalizable, java.lang.Cloneable, Matrix4x3dc
Contains the definition of an affine 4x3 matrix (4 columns, 3 rows) of doubles, and associated functions to transform it. The matrix is column-major to match OpenGL's interpretation, and it looks like this:m00 m10 m20 m30
m01 m11 m21 m31
m02 m12 m22 m32- See Also:
- Serialized Form
-
-
Field Summary
-
Fields inherited from interface org.joml.Matrix4x3dc
PLANE_NX, PLANE_NY, PLANE_NZ, PLANE_PX, PLANE_PY, PLANE_PZ, PROPERTY_IDENTITY, PROPERTY_ORTHONORMAL, PROPERTY_TRANSLATION, PROPERTY_UNKNOWN
-
-
Constructor Summary
Constructors Constructor Description Matrix4x3d()Create a newMatrix4x3dand set it toidentity.Matrix4x3d(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22, double m30, double m31, double m32)Create a new 4x4 matrix using the supplied double values.Matrix4x3d(java.nio.DoubleBuffer buffer)Create a newMatrix4x3dby reading its 12 double components from the givenDoubleBufferat the buffer's current position.Matrix4x3d(Matrix3dc mat)Create a newMatrix4x3dby setting its left 3x3 submatrix to the values of the givenMatrix3dcand the rest to identity.Matrix4x3d(Matrix3fc mat)Create a newMatrix4x3dby setting its left 3x3 submatrix to the values of the givenMatrix3fcand the rest to identity.Matrix4x3d(Matrix4x3dc mat)Create a newMatrix4x3dand make it a copy of the given matrix.Matrix4x3d(Matrix4x3fc mat)Create a newMatrix4x3dand make it a copy of the given matrix.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Matrix4x3dadd(Matrix4x3dc other)Component-wise addthisandother.Matrix4x3dadd(Matrix4x3dc other, Matrix4x3d dest)Component-wise addthisandotherand store the result indest.Matrix4x3dadd(Matrix4x3fc other)Component-wise addthisandother.Matrix4x3dadd(Matrix4x3fc other, Matrix4x3d dest)Component-wise addthisandotherand store the result indest.Matrix4x3darcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY)Apply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles.Matrix4x3darcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4x3d dest)Apply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles, and store the result indest.Matrix4x3darcball(double radius, Vector3dc center, double angleX, double angleY)Apply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles.Matrix4x3darcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4x3d dest)Apply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles, and store the result indest.Matrix4x3dassume(int properties)Assume the given properties about this matrix.Matrix4x3dbillboardCylindrical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up)Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPoswhile constraining a cylindrical rotation around the givenupvector.Matrix4x3dbillboardSpherical(Vector3dc objPos, Vector3dc targetPos)Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPosusing a shortest arc rotation by not preserving any up vector of the object.Matrix4x3dbillboardSpherical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up)Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPos.java.lang.Objectclone()Matrix4x3dcofactor3x3()Compute the cofactor matrix of the left 3x3 submatrix ofthis.Matrix3dcofactor3x3(Matrix3d dest)Compute the cofactor matrix of the left 3x3 submatrix ofthisand store it intodest.Matrix4x3dcofactor3x3(Matrix4x3d dest)Compute the cofactor matrix of the left 3x3 submatrix ofthisand store it intodest.doubledeterminant()Return the determinant of this matrix.Matrix4x3ddetermineProperties()Compute and set the matrix properties returned byproperties()based on the current matrix element values.booleanequals(java.lang.Object obj)booleanequals(Matrix4x3dc m, double delta)Compare the matrix elements ofthismatrix with the given matrix using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Matrix4x3dfma(Matrix4x3dc other, double otherFactor)Component-wise addthisandotherby first multiplying each component ofotherbyotherFactorand adding that result tothis.Matrix4x3dfma(Matrix4x3dc other, double otherFactor, Matrix4x3d dest)Component-wise addthisandotherby first multiplying each component ofotherbyotherFactor, adding that tothisand storing the final result indest.Matrix4x3dfma(Matrix4x3fc other, double otherFactor)Component-wise addthisandotherby first multiplying each component ofotherbyotherFactorand adding that result tothis.Matrix4x3dfma(Matrix4x3fc other, double otherFactor, Matrix4x3d dest)Component-wise addthisandotherby first multiplying each component ofotherbyotherFactor, adding that tothisand storing the final result indest.Vector4dfrustumPlane(int which, Vector4d dest)Calculate a frustum plane ofthismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givendest.double[]get(double[] arr)Store this matrix into the supplied double array in column-major order.double[]get(double[] arr, int offset)Store this matrix into the supplied double array in column-major order at the given offset.float[]get(float[] arr)Store the elements of this matrix as float values in column-major order into the supplied float array.float[]get(float[] arr, int offset)Store the elements of this matrix as float values in column-major order into the supplied float array at the given offset.java.nio.ByteBufferget(int index, java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.DoubleBufferget(int index, java.nio.DoubleBuffer buffer)Store this matrix in column-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.java.nio.FloatBufferget(int index, java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBufferget(java.nio.ByteBuffer buffer)Store this matrix in column-major order into the suppliedByteBufferat the current bufferposition.java.nio.DoubleBufferget(java.nio.DoubleBuffer buffer)Store this matrix in column-major order into the suppliedDoubleBufferat the current bufferposition.java.nio.FloatBufferget(java.nio.FloatBuffer buffer)Store this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.Matrix4dget(Matrix4d dest)Get the current values ofthismatrix and store them into the upper 4x3 submatrix ofdest.Matrix4x3dget(Matrix4x3d dest)Get the current values ofthismatrix and store them intodest.double[]get4x4(double[] arr)Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).double[]get4x4(double[] arr, int offset)Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).float[]get4x4(float[] arr)Store a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).float[]get4x4(float[] arr, int offset)Store a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).java.nio.ByteBufferget4x4(int index, java.nio.ByteBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).java.nio.DoubleBufferget4x4(int index, java.nio.DoubleBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).java.nio.ByteBufferget4x4(java.nio.ByteBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedByteBufferat the current bufferposition, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).java.nio.DoubleBufferget4x4(java.nio.DoubleBuffer buffer)Store a 4x4 matrix in column-major order into the suppliedDoubleBufferat the current bufferposition, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).Vector3dgetColumn(int column, Vector3d dest)Get the column at the givencolumnindex, starting with0.Vector3dgetEulerAnglesXYZ(Vector3d dest)Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.Vector3dgetEulerAnglesYXZ(Vector3d dest)Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.Vector3dgetEulerAnglesZYX(Vector3d dest)Extract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.java.nio.ByteBuffergetFloats(int index, java.nio.ByteBuffer buffer)Store the elements of this matrix as float values in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetFloats(java.nio.ByteBuffer buffer)Store the elements of this matrix as float values in column-major order into the suppliedByteBufferat the current bufferposition.QuaterniondgetNormalizedRotation(Quaterniond dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.QuaternionfgetNormalizedRotation(Quaternionf dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.Vector4dgetRow(int row, Vector4d dest)Get the row at the givenrowindex, starting with0.Vector3dgetScale(Vector3d dest)Get the scaling factors ofthismatrix for the three base axes.Matrix4x3dcgetToAddress(long address)Store this matrix in column-major order at the given off-heap address.Vector3dgetTranslation(Vector3d dest)Get only the translation components(m30, m31, m32)of this matrix and store them in the given vectorxyz.double[]getTransposed(double[] arr)Store this matrix into the supplied float array in row-major order.double[]getTransposed(double[] arr, int offset)Store this matrix into the supplied float array in row-major order at the given offset.java.nio.ByteBuffergetTransposed(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.DoubleBuffergetTransposed(int index, java.nio.DoubleBuffer buffer)Store this matrix in row-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.java.nio.FloatBuffergetTransposed(int index, java.nio.FloatBuffer buffer)Store this matrix in row-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetTransposed(java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferat the current bufferposition.java.nio.DoubleBuffergetTransposed(java.nio.DoubleBuffer buffer)Store this matrix in row-major order into the suppliedDoubleBufferat the current bufferposition.java.nio.FloatBuffergetTransposed(java.nio.FloatBuffer buffer)Store this matrix in row-major order into the suppliedFloatBufferat the current bufferposition.java.nio.ByteBuffergetTransposedFloats(int index, java.nio.ByteBuffer buffer)Store this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.java.nio.ByteBuffergetTransposedFloats(java.nio.ByteBuffer buffer)Store this matrix as float values in row-major order into the suppliedByteBufferat the current bufferposition.Matrix4x3dcgetTransposedToAddress(long address)Store this matrix in row-major order at the given off-heap address.QuaterniondgetUnnormalizedRotation(Quaterniond dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaterniond.QuaternionfgetUnnormalizedRotation(Quaternionf dest)Get the current values ofthismatrix and store the represented rotation into the givenQuaternionf.inthashCode()Matrix4x3didentity()Reset this matrix to the identity.Matrix4x3dinvert()Invert this matrix.Matrix4x3dinvert(Matrix4x3d dest)Invertthismatrix and store the result indest.Matrix4x3dinvertOrtho()Invertthisorthographic projection matrix.Matrix4x3dinvertOrtho(Matrix4x3d dest)Invertthisorthographic projection matrix and store the result into the givendest.booleanisFinite()Determine whether all matrix elements are finite floating-point values, that is, they are notNaNand notinfinity.Matrix4x3dlerp(Matrix4x3dc other, double t)Linearly interpolatethisandotherusing the given interpolation factortand store the result inthis.Matrix4x3dlerp(Matrix4x3dc other, double t, Matrix4x3d dest)Linearly interpolatethisandotherusing the given interpolation factortand store the result indest.Matrix4x3dlookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)Apply a rotation transformation to this matrix to make-zpoint alongdir.Matrix4x3dlookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.Matrix4x3dlookAlong(Vector3dc dir, Vector3dc up)Apply a rotation transformation to this matrix to make-zpoint alongdir.Matrix4x3dlookAlong(Vector3dc dir, Vector3dc up, Matrix4x3d dest)Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.Matrix4x3dlookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eye.Matrix4x3dlookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.Matrix4x3dlookAt(Vector3dc eye, Vector3dc center, Vector3dc up)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eye.Matrix4x3dlookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.Matrix4x3dlookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eye.Matrix4x3dlookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.Matrix4x3dlookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eye.Matrix4x3dlookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.doublem00()Return the value of the matrix element at column 0 and row 0.Matrix4x3dm00(double m00)Set the value of the matrix element at column 0 and row 0.doublem01()Return the value of the matrix element at column 0 and row 1.Matrix4x3dm01(double m01)Set the value of the matrix element at column 0 and row 1.doublem02()Return the value of the matrix element at column 0 and row 2.Matrix4x3dm02(double m02)Set the value of the matrix element at column 0 and row 2.doublem10()Return the value of the matrix element at column 1 and row 0.Matrix4x3dm10(double m10)Set the value of the matrix element at column 1 and row 0.doublem11()Return the value of the matrix element at column 1 and row 1.Matrix4x3dm11(double m11)Set the value of the matrix element at column 1 and row 1.doublem12()Return the value of the matrix element at column 1 and row 2.Matrix4x3dm12(double m12)Set the value of the matrix element at column 1 and row 2.doublem20()Return the value of the matrix element at column 2 and row 0.Matrix4x3dm20(double m20)Set the value of the matrix element at column 2 and row 0.doublem21()Return the value of the matrix element at column 2 and row 1.Matrix4x3dm21(double m21)Set the value of the matrix element at column 2 and row 1.doublem22()Return the value of the matrix element at column 2 and row 2.Matrix4x3dm22(double m22)Set the value of the matrix element at column 2 and row 2.doublem30()Return the value of the matrix element at column 3 and row 0.Matrix4x3dm30(double m30)Set the value of the matrix element at column 3 and row 0.doublem31()Return the value of the matrix element at column 3 and row 1.Matrix4x3dm31(double m31)Set the value of the matrix element at column 3 and row 1.doublem32()Return the value of the matrix element at column 3 and row 2.Matrix4x3dm32(double m32)Set the value of the matrix element at column 3 and row 2.Matrix4x3dmapnXnYnZ()Multiplythisby the matrixMatrix4x3dmapnXnYnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXnYZ()Multiplythisby the matrixMatrix4x3dmapnXnYZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXnZnY()Multiplythisby the matrixMatrix4x3dmapnXnZnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXnZY()Multiplythisby the matrixMatrix4x3dmapnXnZY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXYnZ()Multiplythisby the matrixMatrix4x3dmapnXYnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXZnY()Multiplythisby the matrixMatrix4x3dmapnXZnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnXZY()Multiplythisby the matrixMatrix4x3dmapnXZY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYnXnZ()Multiplythisby the matrixMatrix4x3dmapnYnXnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYnXZ()Multiplythisby the matrixMatrix4x3dmapnYnXZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYnZnX()Multiplythisby the matrixMatrix4x3dmapnYnZnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYnZX()Multiplythisby the matrixMatrix4x3dmapnYnZX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYXnZ()Multiplythisby the matrixMatrix4x3dmapnYXnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYXZ()Multiplythisby the matrixMatrix4x3dmapnYXZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYZnX()Multiplythisby the matrixMatrix4x3dmapnYZnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnYZX()Multiplythisby the matrixMatrix4x3dmapnYZX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZnXnY()Multiplythisby the matrixMatrix4x3dmapnZnXnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZnXY()Multiplythisby the matrixMatrix4x3dmapnZnXY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZnYnX()Multiplythisby the matrixMatrix4x3dmapnZnYnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZnYX()Multiplythisby the matrixMatrix4x3dmapnZnYX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZXnY()Multiplythisby the matrixMatrix4x3dmapnZXnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZXY()Multiplythisby the matrixMatrix4x3dmapnZXY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZYnX()Multiplythisby the matrixMatrix4x3dmapnZYnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapnZYX()Multiplythisby the matrixMatrix4x3dmapnZYX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXnYnZ()Multiplythisby the matrixMatrix4x3dmapXnYnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXnZnY()Multiplythisby the matrixMatrix4x3dmapXnZnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXnZY()Multiplythisby the matrixMatrix4x3dmapXnZY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXZnY()Multiplythisby the matrixMatrix4x3dmapXZnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapXZY()Multiplythisby the matrixMatrix4x3dmapXZY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYnXnZ()Multiplythisby the matrixMatrix4x3dmapYnXnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYnXZ()Multiplythisby the matrixMatrix4x3dmapYnXZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYnZnX()Multiplythisby the matrixMatrix4x3dmapYnZnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYnZX()Multiplythisby the matrixMatrix4x3dmapYnZX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYXnZ()Multiplythisby the matrixMatrix4x3dmapYXnZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYXZ()Multiplythisby the matrixMatrix4x3dmapYXZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYZnX()Multiplythisby the matrixMatrix4x3dmapYZnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapYZX()Multiplythisby the matrixMatrix4x3dmapYZX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZnXnY()Multiplythisby the matrixMatrix4x3dmapZnXnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZnXY()Multiplythisby the matrixMatrix4x3dmapZnXY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZnYnX()Multiplythisby the matrixMatrix4x3dmapZnYnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZnYX()Multiplythisby the matrixMatrix4x3dmapZnYX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZXnY()Multiplythisby the matrixMatrix4x3dmapZXnY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZXY()Multiplythisby the matrixMatrix4x3dmapZXY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZYnX()Multiplythisby the matrixMatrix4x3dmapZYnX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmapZYX()Multiplythisby the matrixMatrix4x3dmapZYX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dmul(Matrix4x3dc right)Multiply this matrix by the suppliedrightmatrix.Matrix4x3dmul(Matrix4x3dc right, Matrix4x3d dest)Multiply this matrix by the suppliedrightmatrix and store the result indest.Matrix4x3dmul(Matrix4x3fc right)Multiply this matrix by the suppliedrightmatrix.Matrix4x3dmul(Matrix4x3fc right, Matrix4x3d dest)Multiply this matrix by the suppliedrightmatrix and store the result indest.Matrix4x3dmul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22)Multiplythisby the 4x3 matrix with the column vectors(rm00, rm01, rm02),(rm10, rm11, rm12),(rm20, rm21, rm22)and(0, 0, 0).Matrix4x3dmul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22, Matrix4x3d dest)Multiplythisby the 4x3 matrix with the column vectors(rm00, rm01, rm02),(rm10, rm11, rm12),(rm20, rm21, rm22)and(0, 0, 0)and store the result indest.Matrix4x3dmulComponentWise(Matrix4x3dc other)Component-wise multiplythisbyother.Matrix4x3dmulComponentWise(Matrix4x3dc other, Matrix4x3d dest)Component-wise multiplythisbyotherand store the result indest.Matrix4x3dmulOrtho(Matrix4x3dc view)Multiplythisorthographic projection matrix by the suppliedviewmatrix.Matrix4x3dmulOrtho(Matrix4x3dc view, Matrix4x3d dest)Multiplythisorthographic projection matrix by the suppliedviewmatrix and store the result indest.Matrix4x3dmulTranslation(Matrix4x3dc right, Matrix4x3d dest)Multiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix and store the result indest.Matrix4x3dmulTranslation(Matrix4x3fc right, Matrix4x3d dest)Multiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix and store the result indest.Matrix4x3dnegateX()Multiplythisby the matrixMatrix4x3dnegateX(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dnegateY()Multiplythisby the matrixMatrix4x3dnegateY(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dnegateZ()Multiplythisby the matrixMatrix4x3dnegateZ(Matrix4x3d dest)Multiplythisby the matrixMatrix4x3dnormal()Compute a normal matrix from the left 3x3 submatrix ofthisand store it into the left 3x3 submatrix ofthis.Matrix3dnormal(Matrix3d dest)Compute a normal matrix from the left 3x3 submatrix ofthisand store it intodest.Matrix4x3dnormal(Matrix4x3d dest)Compute a normal matrix from the left 3x3 submatrix ofthisand store it into the left 3x3 submatrix ofdest.Matrix4x3dnormalize3x3()Normalize the left 3x3 submatrix of this matrix.Matrix3dnormalize3x3(Matrix3d dest)Normalize the left 3x3 submatrix of this matrix and store the result indest.Matrix4x3dnormalize3x3(Matrix4x3d dest)Normalize the left 3x3 submatrix of this matrix and store the result indest.Vector3dnormalizedPositiveX(Vector3d dir)Obtain the direction of+Xbefore the transformation represented bythisorthogonal matrix is applied.Vector3dnormalizedPositiveY(Vector3d dir)Obtain the direction of+Ybefore the transformation represented bythisorthogonal matrix is applied.Vector3dnormalizedPositiveZ(Vector3d dir)Obtain the direction of+Zbefore the transformation represented bythisorthogonal matrix is applied.Matrix4x3dobliqueZ(double a, double b)Apply an oblique projection transformation to this matrix with the given values foraandb.Matrix4x3dobliqueZ(double a, double b, Matrix4x3d dest)Apply an oblique projection transformation to this matrix with the given values foraandband store the result indest.Vector3dorigin(Vector3d origin)Obtain the position that gets transformed to the origin bythismatrix.Matrix4x3dortho(double left, double right, double bottom, double top, double zNear, double zFar)Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4x3dortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4x3dortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4x3dortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4x3dortho2D(double left, double right, double bottom, double top)Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.Matrix4x3dortho2D(double left, double right, double bottom, double top, Matrix4x3d dest)Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest.Matrix4x3dortho2DLH(double left, double right, double bottom, double top)Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.Matrix4x3dortho2DLH(double left, double right, double bottom, double top, Matrix4x3d dest)Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest.Matrix4x3dorthoLH(double left, double right, double bottom, double top, double zNear, double zFar)Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4x3dorthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.Matrix4x3dorthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest.Matrix4x3dorthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4x3dorthoSymmetric(double width, double height, double zNear, double zFar)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4x3dorthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.Matrix4x3dorthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4x3dorthoSymmetric(double width, double height, double zNear, double zFar, Matrix4x3d dest)Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4x3dorthoSymmetricLH(double width, double height, double zNear, double zFar)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.Matrix4x3dorthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.Matrix4x3dorthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.Matrix4x3dorthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4x3d dest)Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.Matrix4x3dpick(double x, double y, double width, double height, int[] viewport)Apply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates.Matrix4x3dpick(double x, double y, double width, double height, int[] viewport, Matrix4x3d dest)Apply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates, and store the result indest.Vector3dpositiveX(Vector3d dir)Obtain the direction of+Xbefore the transformation represented bythismatrix is applied.Vector3dpositiveY(Vector3d dir)Obtain the direction of+Ybefore the transformation represented bythismatrix is applied.Vector3dpositiveZ(Vector3d dir)Obtain the direction of+Zbefore the transformation represented bythismatrix is applied.intproperties()voidreadExternal(java.io.ObjectInput in)Matrix4x3dreflect(double a, double b, double c, double d)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0.Matrix4x3dreflect(double nx, double ny, double nz, double px, double py, double pz)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4x3dreflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.Matrix4x3dreflect(double a, double b, double c, double d, Matrix4x3d dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0and store the result indest.Matrix4x3dreflect(Quaterniondc orientation, Vector3dc point)Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.Matrix4x3dreflect(Quaterniondc orientation, Vector3dc point, Matrix4x3d dest)Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest.Matrix4x3dreflect(Vector3dc normal, Vector3dc point)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4x3dreflect(Vector3dc normal, Vector3dc point, Matrix4x3d dest)Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.Matrix4x3dreflection(double a, double b, double c, double d)Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0.Matrix4x3dreflection(double nx, double ny, double nz, double px, double py, double pz)Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4x3dreflection(Quaterniondc orientation, Vector3dc point)Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.Matrix4x3dreflection(Vector3dc normal, Vector3dc point)Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.Matrix4x3drotate(double ang, double x, double y, double z)Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.Matrix4x3drotate(double ang, double x, double y, double z, Matrix4x3d dest)Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components and store the result indest.Matrix4x3drotate(double angle, Vector3dc axis)Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.Matrix4x3drotate(double angle, Vector3dc axis, Matrix4x3d dest)Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.Matrix4x3drotate(double angle, Vector3fc axis)Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.Matrix4x3drotate(double angle, Vector3fc axis, Matrix4x3d dest)Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.Matrix4x3drotate(AxisAngle4d axisAngle)Apply a rotation transformation, rotating about the givenAxisAngle4d, to this matrix.Matrix4x3drotate(AxisAngle4d axisAngle, Matrix4x3d dest)Apply a rotation transformation, rotating about the givenAxisAngle4dand store the result indest.Matrix4x3drotate(AxisAngle4f axisAngle)Apply a rotation transformation, rotating about the givenAxisAngle4f, to this matrix.Matrix4x3drotate(AxisAngle4f axisAngle, Matrix4x3d dest)Apply a rotation transformation, rotating about the givenAxisAngle4fand store the result indest.Matrix4x3drotate(Quaterniondc quat)Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix.Matrix4x3drotate(Quaterniondc quat, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.Matrix4x3drotate(Quaternionfc quat)Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix.Matrix4x3drotate(Quaternionfc quat, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.Matrix4x3drotateAround(Quaterniondc quat, double ox, double oy, double oz)Apply the rotation transformation of the givenQuaterniondcto this matrix while using(ox, oy, oz)as the rotation origin.Matrix4x3drotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix while using(ox, oy, oz)as the rotation origin, and store the result indest.Matrix4x3drotateLocal(double ang, double x, double y, double z)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis.Matrix4x3drotateLocal(double ang, double x, double y, double z, Matrix4x3d dest)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix4x3drotateLocal(Quaterniondc quat)Pre-multiply the rotation transformation of the givenQuaterniondcto this matrix.Matrix4x3drotateLocal(Quaterniondc quat, Matrix4x3d dest)Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.Matrix4x3drotateLocal(Quaternionfc quat)Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix.Matrix4x3drotateLocal(Quaternionfc quat, Matrix4x3d dest)Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.Matrix4x3drotateLocalX(double ang)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.Matrix4x3drotateLocalX(double ang, Matrix4x3d dest)Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest.Matrix4x3drotateLocalY(double ang)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.Matrix4x3drotateLocalY(double ang, Matrix4x3d dest)Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest.Matrix4x3drotateLocalZ(double ang)Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.Matrix4x3drotateLocalZ(double ang, Matrix4x3d dest)Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest.Matrix4x3drotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis with(dirX, dirY, dirZ).Matrix4x3drotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis with(dirX, dirY, dirZ)and store the result indest.Matrix4x3drotateTowards(Vector3dc dir, Vector3dc up)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdir.Matrix4x3drotateTowards(Vector3dc dir, Vector3dc up, Matrix4x3d dest)Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdirand store the result indest.Matrix4x3drotateTranslation(double ang, double x, double y, double z, Matrix4x3d dest)Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.Matrix4x3drotateTranslation(Quaterniondc quat, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix, which is assumed to only contain a translation, and store the result indest.Matrix4x3drotateTranslation(Quaternionfc quat, Matrix4x3d dest)Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix, which is assumed to only contain a translation, and store the result indest.Matrix4x3drotateX(double ang)Apply rotation about the X axis to this matrix by rotating the given amount of radians.Matrix4x3drotateX(double ang, Matrix4x3d dest)Apply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4x3drotateXYZ(double angleX, double angleY, double angleZ)Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.Matrix4x3drotateXYZ(double angleX, double angleY, double angleZ, Matrix4x3d dest)Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix4x3drotateXYZ(Vector3d angles)Apply rotation ofangles.xradians about the X axis, followed by a rotation ofangles.yradians about the Y axis and followed by a rotation ofangles.zradians about the Z axis.Matrix4x3drotateY(double ang)Apply rotation about the Y axis to this matrix by rotating the given amount of radians.Matrix4x3drotateY(double ang, Matrix4x3d dest)Apply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4x3drotateYXZ(double angleY, double angleX, double angleZ)Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.Matrix4x3drotateYXZ(double angleY, double angleX, double angleZ, Matrix4x3d dest)Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.Matrix4x3drotateYXZ(Vector3d angles)Apply rotation ofangles.yradians about the Y axis, followed by a rotation ofangles.xradians about the X axis and followed by a rotation ofangles.zradians about the Z axis.Matrix4x3drotateZ(double ang)Apply rotation about the Z axis to this matrix by rotating the given amount of radians.Matrix4x3drotateZ(double ang, Matrix4x3d dest)Apply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest.Matrix4x3drotateZYX(double angleZ, double angleY, double angleX)Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.Matrix4x3drotateZYX(double angleZ, double angleY, double angleX, Matrix4x3d dest)Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.Matrix4x3drotateZYX(Vector3d angles)Apply rotation ofangles.zradians about the Z axis, followed by a rotation ofangles.yradians about the Y axis and followed by a rotation ofangles.xradians about the X axis.Matrix4x3drotation(double angle, double x, double y, double z)Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix4x3drotation(double angle, Vector3dc axis)Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix4x3drotation(double angle, Vector3fc axis)Set this matrix to a rotation matrix which rotates the given radians about a given axis.Matrix4x3drotation(AxisAngle4d angleAxis)Set this matrix to a rotation transformation using the givenAxisAngle4d.Matrix4x3drotation(AxisAngle4f angleAxis)Set this matrix to a rotation transformation using the givenAxisAngle4f.Matrix4x3drotation(Quaterniondc quat)Set this matrix to the rotation - and possibly scaling - transformation of the givenQuaterniondc.Matrix4x3drotation(Quaternionfc quat)Set this matrix to the rotation - and possibly scaling - transformation of the givenQuaternionfc.Matrix4x3drotationAround(Quaterniondc quat, double ox, double oy, double oz)Set this matrix to a transformation composed of a rotation of the specifiedQuaterniondcwhile using(ox, oy, oz)as the rotation origin.Matrix4x3drotationTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-zaxis with(dirX, dirY, dirZ).Matrix4x3drotationTowards(Vector3dc dir, Vector3dc up)Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-zaxis withdir.Matrix4x3drotationX(double ang)Set this matrix to a rotation transformation about the X axis.Matrix4x3drotationXYZ(double angleX, double angleY, double angleZ)Set this matrix to a rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.Matrix4x3drotationY(double ang)Set this matrix to a rotation transformation about the Y axis.Matrix4x3drotationYXZ(double angleY, double angleX, double angleZ)Set this matrix to a rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.Matrix4x3drotationZ(double ang)Set this matrix to a rotation transformation about the Z axis.Matrix4x3drotationZYX(double angleZ, double angleY, double angleX)Set this matrix to a rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.Matrix4x3dscale(double xyz)Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.Matrix4x3dscale(double x, double y, double z)Apply scaling tothismatrix by scaling the base axes by the given x, y and z factors.Matrix4x3dscale(double x, double y, double z, Matrix4x3d dest)Apply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.Matrix4x3dscale(double xyz, Matrix4x3d dest)Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result indest.Matrix4x3dscale(Vector3dc xyz)Apply scaling to this matrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively.Matrix4x3dscale(Vector3dc xyz, Matrix4x3d dest)Apply scaling tothismatrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively and store the result indest.Matrix4x3dscaleAround(double factor, double ox, double oy, double oz)Apply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin.Matrix4x3dscaleAround(double sx, double sy, double sz, double ox, double oy, double oz)Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin.Matrix4x3dscaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4x3d dest)Apply scaling tothismatrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin, and store the result indest.Matrix4x3dscaleAround(double factor, double ox, double oy, double oz, Matrix4x3d dest)Apply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin, and store the result indest.Matrix4x3dscaleLocal(double x, double y, double z)Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.Matrix4x3dscaleLocal(double x, double y, double z, Matrix4x3d dest)Pre-multiply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.Matrix4x3dscaleXY(double x, double y)Apply scaling to this matrix by scaling the X axis byxand the Y axis byy.Matrix4x3dscaleXY(double x, double y, Matrix4x3d dest)Apply scaling to this matrix by by scaling the X axis byxand the Y axis byyand store the result indest.Matrix4x3dscaling(double factor)Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.Matrix4x3dscaling(double x, double y, double z)Set this matrix to be a simple scale matrix.Matrix4x3dscaling(Vector3dc xyz)Set this matrix to be a simple scale matrix which scales the base axes byxyz.x,xyz.yandxyz.z, respectively.Matrix4x3dset(double[] m)Set the values in the matrix using a double array that contains the matrix elements in column-major order.Matrix4x3dset(double[] m, int off)Set the values in the matrix using a double array that contains the matrix elements in column-major order.Matrix4x3dset(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22, double m30, double m31, double m32)Set the values within this matrix to the supplied double values.Matrix4x3dset(float[] m)Set the values in the matrix using a float array that contains the matrix elements in column-major order.Matrix4x3dset(float[] m, int off)Set the values in the matrix using a float array that contains the matrix elements in column-major order.Matrix4x3dset(int index, java.nio.ByteBuffer buffer)Set the values of this matrix by reading 12 double values from the givenByteBufferin column-major order, starting at the specified absolute buffer position/index.Matrix4x3dset(int index, java.nio.DoubleBuffer buffer)Set the values of this matrix by reading 12 double values from the givenDoubleBufferin column-major order, starting at the specified absolute buffer position/index.Matrix4x3dset(int index, java.nio.FloatBuffer buffer)Set the values of this matrix by reading 12 float values from the givenFloatBufferin column-major order, starting at the specified absolute buffer position/index.Matrix4x3dset(java.nio.ByteBuffer buffer)Set the values of this matrix by reading 12 double values from the givenByteBufferin column-major order, starting at its current position.Matrix4x3dset(java.nio.DoubleBuffer buffer)Set the values of this matrix by reading 12 double values from the givenDoubleBufferin column-major order, starting at its current position.Matrix4x3dset(java.nio.FloatBuffer buffer)Set the values of this matrix by reading 12 float values from the givenFloatBufferin column-major order, starting at its current position.Matrix4x3dset(AxisAngle4d axisAngle)Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4d.Matrix4x3dset(AxisAngle4f axisAngle)Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4f.Matrix4x3dset(Matrix3dc mat)Set the left 3x3 submatrix of thisMatrix4x3dto the givenMatrix3dcand the rest to identity.Matrix4x3dset(Matrix3fc mat)Set the left 3x3 submatrix of thisMatrix4x3dto the givenMatrix3fcand the rest to identity.Matrix4x3dset(Matrix4dc m)Store the values of the upper 4x3 submatrix ofmintothismatrix.Matrix4x3dset(Matrix4x3dc m)Store the values of the given matrixmintothismatrix.Matrix4x3dset(Matrix4x3fc m)Store the values of the given matrixmintothismatrix.Matrix4x3dset(Quaterniondc q)Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaterniondc.Matrix4x3dset(Quaternionfc q)Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaternionfc.Matrix4x3dset(Vector3dc col0, Vector3dc col1, Vector3dc col2, Vector3dc col3)Set the four columns of this matrix to the supplied vectors, respectively.Matrix4x3dset3x3(Matrix3dc mat)Set the left 3x3 submatrix of thisMatrix4x3dto the givenMatrix3dcand don't change the other elements.Matrix4x3dset3x3(Matrix3fc mat)Set the left 3x3 submatrix of thisMatrix4x3dto the givenMatrix3fcand don't change the other elements.Matrix4x3dset3x3(Matrix4x3dc mat)Set the left 3x3 submatrix of thisMatrix4x3dto that of the givenMatrix4x3dcand don't change the other elements.Matrix4x3dsetColumn(int column, Vector3dc src)Set the column at the givencolumnindex, starting with0.Matrix4x3dsetFloats(int index, java.nio.ByteBuffer buffer)Set the values of this matrix by reading 12 float values from the givenByteBufferin column-major order, starting at the specified absolute buffer position/index.Matrix4x3dsetFloats(java.nio.ByteBuffer buffer)Set the values of this matrix by reading 12 float values from the givenByteBufferin column-major order, starting at its current position.Matrix4x3dsetFromAddress(long address)Set the values of this matrix by reading 12 double values from off-heap memory in column-major order, starting at the given address.Matrix4x3dsetLookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)Set this matrix to a rotation transformation to make-zpoint alongdir.Matrix4x3dsetLookAlong(Vector3dc dir, Vector3dc up)Set this matrix to a rotation transformation to make-zpoint alongdir.Matrix4x3dsetLookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-zwithcenter - eye.Matrix4x3dsetLookAt(Vector3dc eye, Vector3dc center, Vector3dc up)Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-zwithcenter - eye.Matrix4x3dsetLookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+zwithcenter - eye.Matrix4x3dsetLookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up)Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+zwithcenter - eye.Matrix4x3dsetOrtho(double left, double right, double bottom, double top, double zNear, double zFar)Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4x3dsetOrtho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.Matrix4x3dsetOrtho2D(double left, double right, double bottom, double top)Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.Matrix4x3dsetOrtho2DLH(double left, double right, double bottom, double top)Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.Matrix4x3dsetOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar)Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4x3dsetOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.Matrix4x3dsetOrthoSymmetric(double width, double height, double zNear, double zFar)Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4x3dsetOrthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne)Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.Matrix4x3dsetOrthoSymmetricLH(double width, double height, double zNear, double zFar)Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].Matrix4x3dsetOrthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne)Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.Matrix4x3dsetRotationXYZ(double angleX, double angleY, double angleZ)Set only the left 3x3 submatrix of this matrix to a rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.Matrix4x3dsetRotationYXZ(double angleY, double angleX, double angleZ)Set only the left 3x3 submatrix of this matrix to a rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.Matrix4x3dsetRotationZYX(double angleZ, double angleY, double angleX)Set only the left 3x3 submatrix of this matrix to a rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.Matrix4x3dsetRow(int row, Vector4dc src)Set the row at the givenrowindex, starting with0.Matrix4x3dsetTranslation(double x, double y, double z)Set only the translation components(m30, m31, m32)of this matrix to the given values(x, y, z).Matrix4x3dsetTranslation(Vector3dc xyz)Set only the translation components(m30, m31, m32)of this matrix to the given values(xyz.x, xyz.y, xyz.z).Matrix4x3dsetTransposedFromAddress(long address)Set the values of this matrix by reading 12 double values from off-heap memory in row-major order, starting at the given address.Matrix4x3dshadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW).Matrix4x3dshadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4x3d dest)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Matrix4x3dshadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW).Matrix4x3dshadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform, Matrix4x3d dest)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Matrix4x3dshadow(Vector4dc light, double a, double b, double c, double d)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlight.Matrix4x3dshadow(Vector4dc light, double a, double b, double c, double d, Matrix4x3d dest)Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlightand store the result indest.Matrix4x3dshadow(Vector4dc light, Matrix4x3dc planeTransform)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlight.Matrix4x3dshadow(Vector4dc light, Matrix4x3dc planeTransform, Matrix4x3d dest)Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlightand store the result indest.Matrix4x3dsub(Matrix4x3dc subtrahend)Component-wise subtractsubtrahendfromthis.Matrix4x3dsub(Matrix4x3dc subtrahend, Matrix4x3d dest)Component-wise subtractsubtrahendfromthisand store the result indest.Matrix4x3dsub(Matrix4x3fc subtrahend)Component-wise subtractsubtrahendfromthis.Matrix4x3dsub(Matrix4x3fc subtrahend, Matrix4x3d dest)Component-wise subtractsubtrahendfromthisand store the result indest.Matrix4x3dswap(Matrix4x3d other)Exchange the values ofthismatrix with the givenothermatrix.java.lang.StringtoString()Return a string representation of this matrix.java.lang.StringtoString(java.text.NumberFormat formatter)Return a string representation of this matrix by formatting the matrix elements with the givenNumberFormat.Vector4dtransform(Vector4d v)Transform/multiply the given vector by this matrix and store the result in that vector.Vector4dtransform(Vector4dc v, Vector4d dest)Transform/multiply the given vector by this matrix and store the result indest.Matrix4x3dtransformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax)Transform the axis-aligned box given as the minimum corner(minX, minY, minZ)and maximum corner(maxX, maxY, maxZ)bythismatrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Matrix4x3dtransformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax)Transform the axis-aligned box given as the minimum cornerminand maximum cornermaxbythismatrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Vector3dtransformDirection(Vector3d v)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.Vector3dtransformDirection(Vector3dc v, Vector3d dest)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest.Vector3dtransformPosition(Vector3d v)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.Vector3dtransformPosition(Vector3dc v, Vector3d dest)Transform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest.Matrix4x3dtranslate(double x, double y, double z)Apply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3dtranslate(double x, double y, double z, Matrix4x3d dest)Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslate(Vector3dc offset)Apply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3dtranslate(Vector3dc offset, Matrix4x3d dest)Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslate(Vector3fc offset)Apply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3dtranslate(Vector3fc offset, Matrix4x3d dest)Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslateLocal(double x, double y, double z)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3dtranslateLocal(double x, double y, double z, Matrix4x3d dest)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslateLocal(Vector3dc offset)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3dtranslateLocal(Vector3dc offset, Matrix4x3d dest)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslateLocal(Vector3fc offset)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.Matrix4x3dtranslateLocal(Vector3fc offset, Matrix4x3d dest)Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.Matrix4x3dtranslation(double x, double y, double z)Set this matrix to be a simple translation matrix.Matrix4x3dtranslation(Vector3dc offset)Set this matrix to be a simple translation matrix.Matrix4x3dtranslation(Vector3fc offset)Set this matrix to be a simple translation matrix.Matrix4x3dtranslationRotate(double tx, double ty, double tz, double qx, double qy, double qz, double qw)Setthismatrix toT * R, whereTis a translation by the given(tx, ty, tz)andRis a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw).Matrix4x3dtranslationRotate(double tx, double ty, double tz, Quaterniondc quat)Setthismatrix toT * R, whereTis a translation by the given(tx, ty, tz)andRis a rotation transformation specified by the given quaternion.Matrix4x3dtranslationRotate(Vector3dc translation, Quaterniondc quat)Setthismatrix toT * R, whereTis the giventranslationandRis a rotation transformation specified by the given quaternion.Matrix4x3dtranslationRotateInvert(double tx, double ty, double tz, double qx, double qy, double qz, double qw)Setthismatrix to(T * R)-1, whereTis a translation by the given(tx, ty, tz)andRis a rotation transformation specified by the quaternion(qx, qy, qz, qw).Matrix4x3dtranslationRotateInvert(Vector3dc translation, Quaterniondc quat)Setthismatrix to(T * R)-1, whereTis the giventranslationandRis a rotation transformation specified by the given quaternion.Matrix4x3dtranslationRotateMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, Matrix4x3dc mat)Setthismatrix toT * R * M, whereTis a translation by the given(tx, ty, tz),Ris a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw)andMis the given matrixmatMatrix4x3dtranslationRotateMul(double tx, double ty, double tz, Quaternionfc quat, Matrix4x3dc mat)Setthismatrix toT * R * M, whereTis a translation by the given(tx, ty, tz),Ris a rotation - and possibly scaling - transformation specified by the given quaternion andMis the given matrixmat.Matrix4x3dtranslationRotateScale(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz)Setthismatrix toT * R * S, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw), andSis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz).Matrix4x3dtranslationRotateScale(Vector3dc translation, Quaterniondc quat, Vector3dc scale)Setthismatrix toT * R * S, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales the axes byscale.Matrix4x3dtranslationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)Setthismatrix toT * R * S, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales the axes byscale.Matrix4x3dtranslationRotateScaleMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz, Matrix4x3dc m)Setthismatrix toT * R * S * M, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw),Sis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz).Matrix4x3dtranslationRotateScaleMul(Vector3dc translation, Quaterniondc quat, Vector3dc scale, Matrix4x3dc m)Setthismatrix toT * R * S * M, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion,Sis a scaling transformation which scales the axes byscale.Matrix4x3dtranslationRotateTowards(double posX, double posY, double posZ, double dirX, double dirY, double dirZ, double upX, double upY, double upZ)Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given(posX, posY, posZ)and aligns the local-zaxis with(dirX, dirY, dirZ).Matrix4x3dtranslationRotateTowards(Vector3dc pos, Vector3dc dir, Vector3dc up)Set this matrix to a model transformation for a right-handed coordinate system, that translates to the givenposand aligns the local-zaxis withdir.Matrix4x3dtranspose3x3()Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.Matrix3dtranspose3x3(Matrix3d dest)Transpose only the left 3x3 submatrix of this matrix and store the result indest.Matrix4x3dtranspose3x3(Matrix4x3d dest)Transpose only the left 3x3 submatrix of this matrix and store the result indest.voidwriteExternal(java.io.ObjectOutput out)Matrix4x3dzero()Set all the values within this matrix to 0.
-
-
-
Constructor Detail
-
Matrix4x3d
public Matrix4x3d()
Create a newMatrix4x3dand set it toidentity.
-
Matrix4x3d
public Matrix4x3d(Matrix4x3dc mat)
Create a newMatrix4x3dand make it a copy of the given matrix.- Parameters:
mat- theMatrix4x3dcto copy the values from
-
Matrix4x3d
public Matrix4x3d(Matrix4x3fc mat)
Create a newMatrix4x3dand make it a copy of the given matrix.- Parameters:
mat- theMatrix4x3fcto copy the values from
-
Matrix4x3d
public Matrix4x3d(Matrix3dc mat)
Create a newMatrix4x3dby setting its left 3x3 submatrix to the values of the givenMatrix3dcand the rest to identity.- Parameters:
mat- theMatrix3dc
-
Matrix4x3d
public Matrix4x3d(Matrix3fc mat)
Create a newMatrix4x3dby setting its left 3x3 submatrix to the values of the givenMatrix3fcand the rest to identity.- Parameters:
mat- theMatrix3dc
-
Matrix4x3d
public Matrix4x3d(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22, double m30, double m31, double m32)Create a new 4x4 matrix using the supplied double values.- Parameters:
m00- the value of m00m01- the value of m01m02- the value of m02m10- the value of m10m11- the value of m11m12- the value of m12m20- the value of m20m21- the value of m21m22- the value of m22m30- the value of m30m31- the value of m31m32- the value of m32
-
Matrix4x3d
public Matrix4x3d(java.nio.DoubleBuffer buffer)
Create a newMatrix4x3dby reading its 12 double components from the givenDoubleBufferat the buffer's current position.That DoubleBuffer is expected to hold the values in column-major order.
The buffer's position will not be changed by this method.
- Parameters:
buffer- theDoubleBufferto read the matrix values from
-
-
Method Detail
-
assume
public Matrix4x3d assume(@MagicConstant(intValues={0L,4L,8L,16L}) int properties)
Assume the given properties about this matrix.Use one or multiple of 0,
Matrix4x3dc.PROPERTY_IDENTITY,Matrix4x3dc.PROPERTY_TRANSLATION,Matrix4x3dc.PROPERTY_ORTHONORMAL.- Parameters:
properties- bitset of the properties to assume about this matrix- Returns:
- this
-
determineProperties
public Matrix4x3d determineProperties()
Compute and set the matrix properties returned byproperties()based on the current matrix element values.- Returns:
- this
-
properties
@MagicConstant(intValues={0L,4L,8L,16L}) public int properties()- Specified by:
propertiesin interfaceMatrix4x3dc- Returns:
- the properties of the matrix
-
m00
public double m00()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 0 and row 0.- Specified by:
m00in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m01
public double m01()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 0 and row 1.- Specified by:
m01in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m02
public double m02()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 0 and row 2.- Specified by:
m02in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m10
public double m10()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 1 and row 0.- Specified by:
m10in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m11
public double m11()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 1 and row 1.- Specified by:
m11in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m12
public double m12()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 1 and row 2.- Specified by:
m12in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m20
public double m20()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 2 and row 0.- Specified by:
m20in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m21
public double m21()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 2 and row 1.- Specified by:
m21in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m22
public double m22()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 2 and row 2.- Specified by:
m22in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m30
public double m30()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 3 and row 0.- Specified by:
m30in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m31
public double m31()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 3 and row 1.- Specified by:
m31in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m32
public double m32()
Description copied from interface:Matrix4x3dcReturn the value of the matrix element at column 3 and row 2.- Specified by:
m32in interfaceMatrix4x3dc- Returns:
- the value of the matrix element
-
m00
public Matrix4x3d m00(double m00)
Set the value of the matrix element at column 0 and row 0.- Parameters:
m00- the new value- Returns:
- this
-
m01
public Matrix4x3d m01(double m01)
Set the value of the matrix element at column 0 and row 1.- Parameters:
m01- the new value- Returns:
- this
-
m02
public Matrix4x3d m02(double m02)
Set the value of the matrix element at column 0 and row 2.- Parameters:
m02- the new value- Returns:
- this
-
m10
public Matrix4x3d m10(double m10)
Set the value of the matrix element at column 1 and row 0.- Parameters:
m10- the new value- Returns:
- this
-
m11
public Matrix4x3d m11(double m11)
Set the value of the matrix element at column 1 and row 1.- Parameters:
m11- the new value- Returns:
- this
-
m12
public Matrix4x3d m12(double m12)
Set the value of the matrix element at column 1 and row 2.- Parameters:
m12- the new value- Returns:
- this
-
m20
public Matrix4x3d m20(double m20)
Set the value of the matrix element at column 2 and row 0.- Parameters:
m20- the new value- Returns:
- this
-
m21
public Matrix4x3d m21(double m21)
Set the value of the matrix element at column 2 and row 1.- Parameters:
m21- the new value- Returns:
- this
-
m22
public Matrix4x3d m22(double m22)
Set the value of the matrix element at column 2 and row 2.- Parameters:
m22- the new value- Returns:
- this
-
m30
public Matrix4x3d m30(double m30)
Set the value of the matrix element at column 3 and row 0.- Parameters:
m30- the new value- Returns:
- this
-
m31
public Matrix4x3d m31(double m31)
Set the value of the matrix element at column 3 and row 1.- Parameters:
m31- the new value- Returns:
- this
-
m32
public Matrix4x3d m32(double m32)
Set the value of the matrix element at column 3 and row 2.- Parameters:
m32- the new value- Returns:
- this
-
identity
public Matrix4x3d identity()
Reset this matrix to the identity.Please note that if a call to
identity()is immediately followed by a call to:translate,rotate,scale,ortho,ortho2D,lookAt,lookAlong, or any of their overloads, then the call toidentity()can be omitted and the subsequent call replaced with:translation,rotation,scaling,setOrtho,setOrtho2D,setLookAt,setLookAlong, or any of their overloads.- Returns:
- this
-
set
public Matrix4x3d set(Matrix4x3dc m)
Store the values of the given matrixmintothismatrix.- Parameters:
m- the matrix to copy the values from- Returns:
- this
-
set
public Matrix4x3d set(Matrix4x3fc m)
Store the values of the given matrixmintothismatrix.- Parameters:
m- the matrix to copy the values from- Returns:
- this
-
set
public Matrix4x3d set(Matrix4dc m)
Store the values of the upper 4x3 submatrix ofmintothismatrix.- Parameters:
m- the matrix to copy the values from- Returns:
- this
- See Also:
Matrix4dc.get4x3(Matrix4x3d)
-
get
public Matrix4d get(Matrix4d dest)
Description copied from interface:Matrix4x3dcGet the current values ofthismatrix and store them into the upper 4x3 submatrix ofdest.The other elements of
destwill not be modified.- Specified by:
getin interfaceMatrix4x3dc- Parameters:
dest- the destination matrix- Returns:
- dest
- See Also:
Matrix4d.set4x3(Matrix4x3dc)
-
set
public Matrix4x3d set(Matrix3dc mat)
Set the left 3x3 submatrix of thisMatrix4x3dto the givenMatrix3dcand the rest to identity.- Parameters:
mat- theMatrix3dc- Returns:
- this
- See Also:
Matrix4x3d(Matrix3dc)
-
set
public Matrix4x3d set(Matrix3fc mat)
Set the left 3x3 submatrix of thisMatrix4x3dto the givenMatrix3fcand the rest to identity.- Parameters:
mat- theMatrix3fc- Returns:
- this
- See Also:
Matrix4x3d(Matrix3fc)
-
set
public Matrix4x3d set(Vector3dc col0, Vector3dc col1, Vector3dc col2, Vector3dc col3)
Set the four columns of this matrix to the supplied vectors, respectively.- Parameters:
col0- the first columncol1- the second columncol2- the third columncol3- the fourth column- Returns:
- this
-
set3x3
public Matrix4x3d set3x3(Matrix4x3dc mat)
Set the left 3x3 submatrix of thisMatrix4x3dto that of the givenMatrix4x3dcand don't change the other elements.- Parameters:
mat- theMatrix4x3dc- Returns:
- this
-
set
public Matrix4x3d set(AxisAngle4f axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4f.- Parameters:
axisAngle- theAxisAngle4f- Returns:
- this
-
set
public Matrix4x3d set(AxisAngle4d axisAngle)
Set this matrix to be equivalent to the rotation specified by the givenAxisAngle4d.- Parameters:
axisAngle- theAxisAngle4d- Returns:
- this
-
set
public Matrix4x3d set(Quaternionfc q)
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaternionfc.This method is equivalent to calling:
rotation(q)- Parameters:
q- theQuaternionfc- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
set
public Matrix4x3d set(Quaterniondc q)
Set this matrix to be equivalent to the rotation - and possibly scaling - specified by the givenQuaterniondc.This method is equivalent to calling:
rotation(q)- Parameters:
q- theQuaterniondc- Returns:
- this
-
mul
public Matrix4x3d mul(Matrix4x3dc right)
Multiply this matrix by the suppliedrightmatrix.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the multiplication- Returns:
- this
-
mul
public Matrix4x3d mul(Matrix4x3dc right, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiply this matrix by the suppliedrightmatrix and store the result indest.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Specified by:
mulin interfaceMatrix4x3dc- Parameters:
right- the right operand of the multiplicationdest- will hold the result- Returns:
- dest
-
mul
public Matrix4x3d mul(Matrix4x3fc right)
Multiply this matrix by the suppliedrightmatrix.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Parameters:
right- the right operand of the multiplication- Returns:
- this
-
mul
public Matrix4x3d mul(Matrix4x3fc right, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiply this matrix by the suppliedrightmatrix and store the result indest.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Specified by:
mulin interfaceMatrix4x3dc- Parameters:
right- the right operand of the multiplicationdest- will hold the result- Returns:
- dest
-
mulTranslation
public Matrix4x3d mulTranslation(Matrix4x3dc right, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix and store the result indest.This method assumes that
thismatrix only contains a translation.This method will not modify either the last row of
thisor the last row ofright.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Specified by:
mulTranslationin interfaceMatrix4x3dc- Parameters:
right- the right operand of the matrix multiplicationdest- the destination matrix, which will hold the result- Returns:
- dest
-
mulTranslation
public Matrix4x3d mulTranslation(Matrix4x3fc right, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiply this matrix, which is assumed to only contain a translation, by the suppliedrightmatrix and store the result indest.This method assumes that
thismatrix only contains a translation.This method will not modify either the last row of
thisor the last row ofright.If
Misthismatrix andRtherightmatrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of the right matrix will be applied first!- Specified by:
mulTranslationin interfaceMatrix4x3dc- Parameters:
right- the right operand of the matrix multiplicationdest- the destination matrix, which will hold the result- Returns:
- dest
-
mulOrtho
public Matrix4x3d mulOrtho(Matrix4x3dc view)
Multiplythisorthographic projection matrix by the suppliedviewmatrix.If
Misthismatrix andVtheviewmatrix, then the new matrix will beM * V. So when transforming a vectorvwith the new matrix by usingM * V * v, the transformation of theviewmatrix will be applied first!- Parameters:
view- the matrix which to multiplythiswith- Returns:
- this
-
mulOrtho
public Matrix4x3d mulOrtho(Matrix4x3dc view, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisorthographic projection matrix by the suppliedviewmatrix and store the result indest.If
Misthismatrix andVtheviewmatrix, then the new matrix will beM * V. So when transforming a vectorvwith the new matrix by usingM * V * v, the transformation of theviewmatrix will be applied first!- Specified by:
mulOrthoin interfaceMatrix4x3dc- Parameters:
view- the matrix which to multiplythiswithdest- the destination matrix, which will hold the result- Returns:
- dest
-
mul3x3
public Matrix4x3d mul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22)
Multiplythisby the 4x3 matrix with the column vectors(rm00, rm01, rm02),(rm10, rm11, rm12),(rm20, rm21, rm22)and(0, 0, 0).If
Misthismatrix andRthe specified matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of theRmatrix will be applied first!- Parameters:
rm00- the value of the m00 elementrm01- the value of the m01 elementrm02- the value of the m02 elementrm10- the value of the m10 elementrm11- the value of the m11 elementrm12- the value of the m12 elementrm20- the value of the m20 elementrm21- the value of the m21 elementrm22- the value of the m22 element- Returns:
- this
-
mul3x3
public Matrix4x3d mul3x3(double rm00, double rm01, double rm02, double rm10, double rm11, double rm12, double rm20, double rm21, double rm22, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the 4x3 matrix with the column vectors(rm00, rm01, rm02),(rm10, rm11, rm12),(rm20, rm21, rm22)and(0, 0, 0)and store the result indest.If
Misthismatrix andRthe specified matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the transformation of theRmatrix will be applied first!- Specified by:
mul3x3in interfaceMatrix4x3dc- Parameters:
rm00- the value of the m00 elementrm01- the value of the m01 elementrm02- the value of the m02 elementrm10- the value of the m10 elementrm11- the value of the m11 elementrm12- the value of the m12 elementrm20- the value of the m20 elementrm21- the value of the m21 elementrm22- the value of the m22 elementdest- will hold the result- Returns:
- dest
-
fma
public Matrix4x3d fma(Matrix4x3dc other, double otherFactor)
Component-wise addthisandotherby first multiplying each component ofotherbyotherFactorand adding that result tothis.The matrix
otherwill not be changed.- Parameters:
other- the other matrixotherFactor- the factor to multiply each of the other matrix's components- Returns:
- this
-
fma
public Matrix4x3d fma(Matrix4x3dc other, double otherFactor, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcComponent-wise addthisandotherby first multiplying each component ofotherbyotherFactor, adding that tothisand storing the final result indest.The other components of
destwill be set to the ones ofthis.The matrices
thisandotherwill not be changed.- Specified by:
fmain interfaceMatrix4x3dc- Parameters:
other- the other matrixotherFactor- the factor to multiply each of the other matrix's componentsdest- will hold the result- Returns:
- dest
-
fma
public Matrix4x3d fma(Matrix4x3fc other, double otherFactor)
Component-wise addthisandotherby first multiplying each component ofotherbyotherFactorand adding that result tothis.The matrix
otherwill not be changed.- Parameters:
other- the other matrixotherFactor- the factor to multiply each of the other matrix's components- Returns:
- this
-
fma
public Matrix4x3d fma(Matrix4x3fc other, double otherFactor, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcComponent-wise addthisandotherby first multiplying each component ofotherbyotherFactor, adding that tothisand storing the final result indest.The other components of
destwill be set to the ones ofthis.The matrices
thisandotherwill not be changed.- Specified by:
fmain interfaceMatrix4x3dc- Parameters:
other- the other matrixotherFactor- the factor to multiply each of the other matrix's componentsdest- will hold the result- Returns:
- dest
-
add
public Matrix4x3d add(Matrix4x3dc other)
Component-wise addthisandother.- Parameters:
other- the other addend- Returns:
- this
-
add
public Matrix4x3d add(Matrix4x3dc other, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcComponent-wise addthisandotherand store the result indest.- Specified by:
addin interfaceMatrix4x3dc- Parameters:
other- the other addenddest- will hold the result- Returns:
- dest
-
add
public Matrix4x3d add(Matrix4x3fc other)
Component-wise addthisandother.- Parameters:
other- the other addend- Returns:
- this
-
add
public Matrix4x3d add(Matrix4x3fc other, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcComponent-wise addthisandotherand store the result indest.- Specified by:
addin interfaceMatrix4x3dc- Parameters:
other- the other addenddest- will hold the result- Returns:
- dest
-
sub
public Matrix4x3d sub(Matrix4x3dc subtrahend)
Component-wise subtractsubtrahendfromthis.- Parameters:
subtrahend- the subtrahend- Returns:
- this
-
sub
public Matrix4x3d sub(Matrix4x3dc subtrahend, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcComponent-wise subtractsubtrahendfromthisand store the result indest.- Specified by:
subin interfaceMatrix4x3dc- Parameters:
subtrahend- the subtrahenddest- will hold the result- Returns:
- dest
-
sub
public Matrix4x3d sub(Matrix4x3fc subtrahend)
Component-wise subtractsubtrahendfromthis.- Parameters:
subtrahend- the subtrahend- Returns:
- this
-
sub
public Matrix4x3d sub(Matrix4x3fc subtrahend, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcComponent-wise subtractsubtrahendfromthisand store the result indest.- Specified by:
subin interfaceMatrix4x3dc- Parameters:
subtrahend- the subtrahenddest- will hold the result- Returns:
- dest
-
mulComponentWise
public Matrix4x3d mulComponentWise(Matrix4x3dc other)
Component-wise multiplythisbyother.- Parameters:
other- the other matrix- Returns:
- this
-
mulComponentWise
public Matrix4x3d mulComponentWise(Matrix4x3dc other, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcComponent-wise multiplythisbyotherand store the result indest.- Specified by:
mulComponentWisein interfaceMatrix4x3dc- Parameters:
other- the other matrixdest- will hold the result- Returns:
- dest
-
set
public Matrix4x3d set(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22, double m30, double m31, double m32)
Set the values within this matrix to the supplied double values. The matrix will look like this:
m00, m10, m20, m30
m01, m11, m21, m31
m02, m12, m22, m32- Parameters:
m00- the new value of m00m01- the new value of m01m02- the new value of m02m10- the new value of m10m11- the new value of m11m12- the new value of m12m20- the new value of m20m21- the new value of m21m22- the new value of m22m30- the new value of m30m31- the new value of m31m32- the new value of m32- Returns:
- this
-
set
public Matrix4x3d set(double[] m, int off)
Set the values in the matrix using a double array that contains the matrix elements in column-major order.The results will look like this:
0, 3, 6, 9
1, 4, 7, 10
2, 5, 8, 11- Parameters:
m- the array to read the matrix values fromoff- the offset into the array- Returns:
- this
- See Also:
set(double[])
-
set
public Matrix4x3d set(double[] m)
Set the values in the matrix using a double array that contains the matrix elements in column-major order.The results will look like this:
0, 3, 6, 9
1, 4, 7, 10
2, 5, 8, 11- Parameters:
m- the array to read the matrix values from- Returns:
- this
- See Also:
set(double[], int)
-
set
public Matrix4x3d set(float[] m, int off)
Set the values in the matrix using a float array that contains the matrix elements in column-major order.The results will look like this:
0, 3, 6, 9
1, 4, 7, 10
2, 5, 8, 11- Parameters:
m- the array to read the matrix values fromoff- the offset into the array- Returns:
- this
- See Also:
set(float[])
-
set
public Matrix4x3d set(float[] m)
Set the values in the matrix using a float array that contains the matrix elements in column-major order.The results will look like this:
0, 3, 6, 9
1, 4, 7, 10
2, 5, 8, 11- Parameters:
m- the array to read the matrix values from- Returns:
- this
- See Also:
set(float[], int)
-
set
public Matrix4x3d set(java.nio.DoubleBuffer buffer)
Set the values of this matrix by reading 12 double values from the givenDoubleBufferin column-major order, starting at its current position.The DoubleBuffer is expected to contain the values in column-major order.
The position of the DoubleBuffer will not be changed by this method.
- Parameters:
buffer- the DoubleBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4x3d set(java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenFloatBufferin column-major order, starting at its current position.The FloatBuffer is expected to contain the values in column-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
buffer- the FloatBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4x3d set(java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 12 double values from the givenByteBufferin column-major order, starting at its current position.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
buffer- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4x3d set(int index, java.nio.DoubleBuffer buffer)
Set the values of this matrix by reading 12 double values from the givenDoubleBufferin column-major order, starting at the specified absolute buffer position/index.The DoubleBuffer is expected to contain the values in column-major order.
The position of the DoubleBuffer will not be changed by this method.
- Parameters:
index- the absolute position into the DoubleBufferbuffer- the DoubleBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4x3d set(int index, java.nio.FloatBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenFloatBufferin column-major order, starting at the specified absolute buffer position/index.The FloatBuffer is expected to contain the values in column-major order.
The position of the FloatBuffer will not be changed by this method.
- Parameters:
index- the absolute position into the FloatBufferbuffer- the FloatBuffer to read the matrix values from in column-major order- Returns:
- this
-
set
public Matrix4x3d set(int index, java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 12 double values from the givenByteBufferin column-major order, starting at the specified absolute buffer position/index.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
index- the absolute position into the ByteBufferbuffer- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
setFloats
public Matrix4x3d setFloats(java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenByteBufferin column-major order, starting at its current position.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
buffer- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
setFloats
public Matrix4x3d setFloats(int index, java.nio.ByteBuffer buffer)
Set the values of this matrix by reading 12 float values from the givenByteBufferin column-major order, starting at the specified absolute buffer position/index.The ByteBuffer is expected to contain the values in column-major order.
The position of the ByteBuffer will not be changed by this method.
- Parameters:
index- the absolute position into the ByteBufferbuffer- the ByteBuffer to read the matrix values from in column-major order- Returns:
- this
-
setFromAddress
public Matrix4x3d setFromAddress(long address)
Set the values of this matrix by reading 12 double values from off-heap memory in column-major order, starting at the given address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address- the off-heap memory address to read the matrix values from in column-major order- Returns:
- this
-
setTransposedFromAddress
public Matrix4x3d setTransposedFromAddress(long address)
Set the values of this matrix by reading 12 double values from off-heap memory in row-major order, starting at the given address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Parameters:
address- the off-heap memory address to read the matrix values from in row-major order- Returns:
- this
-
determinant
public double determinant()
Description copied from interface:Matrix4x3dcReturn the determinant of this matrix.- Specified by:
determinantin interfaceMatrix4x3dc- Returns:
- the determinant
-
invert
public Matrix4x3d invert()
Invert this matrix.- Returns:
- this
-
invert
public Matrix4x3d invert(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcInvertthismatrix and store the result indest.- Specified by:
invertin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
invertOrtho
public Matrix4x3d invertOrtho(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcInvertthisorthographic projection matrix and store the result into the givendest.This method can be used to quickly obtain the inverse of an orthographic projection matrix.
- Specified by:
invertOrthoin interfaceMatrix4x3dc- Parameters:
dest- will hold the inverse ofthis- Returns:
- dest
-
invertOrtho
public Matrix4x3d invertOrtho()
Invertthisorthographic projection matrix.This method can be used to quickly obtain the inverse of an orthographic projection matrix.
- Returns:
- this
-
transpose3x3
public Matrix4x3d transpose3x3()
Transpose only the left 3x3 submatrix of this matrix and set the rest of the matrix elements to identity.- Returns:
- this
-
transpose3x3
public Matrix4x3d transpose3x3(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcTranspose only the left 3x3 submatrix of this matrix and store the result indest.All other matrix elements are left unchanged.
- Specified by:
transpose3x3in interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
transpose3x3
public Matrix3d transpose3x3(Matrix3d dest)
Description copied from interface:Matrix4x3dcTranspose only the left 3x3 submatrix of this matrix and store the result indest.- Specified by:
transpose3x3in interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
translation
public Matrix4x3d translation(double x, double y, double z)
Set this matrix to be a simple translation matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in z- Returns:
- this
-
translation
public Matrix4x3d translation(Vector3fc offset)
Set this matrix to be a simple translation matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
- Parameters:
offset- the offsets in x, y and z to translate- Returns:
- this
-
translation
public Matrix4x3d translation(Vector3dc offset)
Set this matrix to be a simple translation matrix.The resulting matrix can be multiplied against another transformation matrix to obtain an additional translation.
- Parameters:
offset- the offsets in x, y and z to translate- Returns:
- this
-
setTranslation
public Matrix4x3d setTranslation(double x, double y, double z)
Set only the translation components(m30, m31, m32)of this matrix to the given values(x, y, z).To build a translation matrix instead, use
translation(double, double, double). To apply a translation, usetranslate(double, double, double).- Parameters:
x- the units to translate in xy- the units to translate in yz- the units to translate in z- Returns:
- this
- See Also:
translation(double, double, double),translate(double, double, double)
-
setTranslation
public Matrix4x3d setTranslation(Vector3dc xyz)
Set only the translation components(m30, m31, m32)of this matrix to the given values(xyz.x, xyz.y, xyz.z).To build a translation matrix instead, use
translation(Vector3dc). To apply a translation, usetranslate(Vector3dc).- Parameters:
xyz- the units to translate in(x, y, z)- Returns:
- this
- See Also:
translation(Vector3dc),translate(Vector3dc)
-
getTranslation
public Vector3d getTranslation(Vector3d dest)
Description copied from interface:Matrix4x3dcGet only the translation components(m30, m31, m32)of this matrix and store them in the given vectorxyz.- Specified by:
getTranslationin interfaceMatrix4x3dc- Parameters:
dest- will hold the translation components of this matrix- Returns:
- dest
-
getScale
public Vector3d getScale(Vector3d dest)
Description copied from interface:Matrix4x3dcGet the scaling factors ofthismatrix for the three base axes.- Specified by:
getScalein interfaceMatrix4x3dc- Parameters:
dest- will hold the scaling factors forx,yandz- Returns:
- dest
-
toString
public java.lang.String toString()
Return a string representation of this matrix.This method creates a new
DecimalFormaton every invocation with the format string "0.000E0;-".- Overrides:
toStringin classjava.lang.Object- Returns:
- the string representation
-
toString
public java.lang.String toString(java.text.NumberFormat formatter)
Return a string representation of this matrix by formatting the matrix elements with the givenNumberFormat.- Parameters:
formatter- theNumberFormatused to format the matrix values with- Returns:
- the string representation
-
get
public Matrix4x3d get(Matrix4x3d dest)
Get the current values ofthismatrix and store them intodest.This is the reverse method of
set(Matrix4x3dc)and allows to obtain intermediate calculation results when chaining multiple transformations.- Specified by:
getin interfaceMatrix4x3dc- Parameters:
dest- the destination matrix- Returns:
- the passed in destination
- See Also:
set(Matrix4x3dc)
-
getUnnormalizedRotation
public Quaternionf getUnnormalizedRotation(Quaternionf dest)
Description copied from interface:Matrix4x3dcGet the current values ofthismatrix and store the represented rotation into the givenQuaternionf.This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Specified by:
getUnnormalizedRotationin interfaceMatrix4x3dc- Parameters:
dest- the destinationQuaternionf- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromUnnormalized(Matrix4x3dc)
-
getNormalizedRotation
public Quaternionf getNormalizedRotation(Quaternionf dest)
Description copied from interface:Matrix4x3dcGet the current values ofthismatrix and store the represented rotation into the givenQuaternionf.This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
- Specified by:
getNormalizedRotationin interfaceMatrix4x3dc- Parameters:
dest- the destinationQuaternionf- Returns:
- the passed in destination
- See Also:
Quaternionf.setFromNormalized(Matrix4x3dc)
-
getUnnormalizedRotation
public Quaterniond getUnnormalizedRotation(Quaterniond dest)
Description copied from interface:Matrix4x3dcGet the current values ofthismatrix and store the represented rotation into the givenQuaterniond.This method assumes that the first three column vectors of the left 3x3 submatrix are not normalized and thus allows to ignore any additional scaling factor that is applied to the matrix.
- Specified by:
getUnnormalizedRotationin interfaceMatrix4x3dc- Parameters:
dest- the destinationQuaterniond- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromUnnormalized(Matrix4x3dc)
-
getNormalizedRotation
public Quaterniond getNormalizedRotation(Quaterniond dest)
Description copied from interface:Matrix4x3dcGet the current values ofthismatrix and store the represented rotation into the givenQuaterniond.This method assumes that the first three column vectors of the left 3x3 submatrix are normalized.
- Specified by:
getNormalizedRotationin interfaceMatrix4x3dc- Parameters:
dest- the destinationQuaterniond- Returns:
- the passed in destination
- See Also:
Quaterniond.setFromNormalized(Matrix4x3dc)
-
get
public java.nio.DoubleBuffer get(java.nio.DoubleBuffer buffer)
Description copied from interface:Matrix4x3dcStore this matrix in column-major order into the suppliedDoubleBufferat the current bufferposition.This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer at which the matrix is stored, use
Matrix4x3dc.get(int, DoubleBuffer), taking the absolute position as parameter.- Specified by:
getin interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.get(int, DoubleBuffer)
-
get
public java.nio.DoubleBuffer get(int index, java.nio.DoubleBuffer buffer)Description copied from interface:Matrix4x3dcStore this matrix in column-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given
DoubleBuffer.- Specified by:
getin interfaceMatrix4x3dc- Parameters:
index- the absolute position into theDoubleBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
public java.nio.FloatBuffer get(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3dcStore this matrix in column-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4x3dc.get(int, FloatBuffer), taking the absolute position as parameter.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Specified by:
getin interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.get(int, FloatBuffer)
-
get
public java.nio.FloatBuffer get(int index, java.nio.FloatBuffer buffer)Description copied from interface:Matrix4x3dcStore this matrix in column-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Specified by:
getin interfaceMatrix4x3dc- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get
public java.nio.ByteBuffer get(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3dcStore this matrix in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3dc.get(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
getin interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.get(int, ByteBuffer)
-
get
public java.nio.ByteBuffer get(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4x3dcStore this matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Specified by:
getin interfaceMatrix4x3dc- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getFloats
public java.nio.ByteBuffer getFloats(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3dcStore the elements of this matrix as float values in column-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3dc.getFloats(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
getFloatsin interfaceMatrix4x3dc- Parameters:
buffer- will receive the elements of this matrix as float values in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.getFloats(int, ByteBuffer)
-
getFloats
public java.nio.ByteBuffer getFloats(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4x3dcStore the elements of this matrix as float values in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given ByteBuffer.
- Specified by:
getFloatsin interfaceMatrix4x3dc- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the elements of this matrix as float values in column-major order- Returns:
- the passed in buffer
-
getToAddress
public Matrix4x3dc getToAddress(long address)
Description copied from interface:Matrix4x3dcStore this matrix in column-major order at the given off-heap address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Specified by:
getToAddressin interfaceMatrix4x3dc- Parameters:
address- the off-heap address where to store this matrix- Returns:
- this
-
getTransposedToAddress
public Matrix4x3dc getTransposedToAddress(long address)
Description copied from interface:Matrix4x3dcStore this matrix in row-major order at the given off-heap address.This method will throw an
UnsupportedOperationExceptionwhen JOML is used with `-Djoml.nounsafe`.This method is unsafe as it can result in a crash of the JVM process when the specified address range does not belong to this process.
- Specified by:
getTransposedToAddressin interfaceMatrix4x3dc- Parameters:
address- the off-heap address where to store this matrix- Returns:
- this
-
get
public double[] get(double[] arr, int offset)Description copied from interface:Matrix4x3dcStore this matrix into the supplied double array in column-major order at the given offset.- Specified by:
getin interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get
public double[] get(double[] arr)
Description copied from interface:Matrix4x3dcStore this matrix into the supplied double array in column-major order.In order to specify an explicit offset into the array, use the method
Matrix4x3dc.get(double[], int).- Specified by:
getin interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4x3dc.get(double[], int)
-
get
public float[] get(float[] arr, int offset)Description copied from interface:Matrix4x3dcStore the elements of this matrix as float values in column-major order into the supplied float array at the given offset.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
- Specified by:
getin interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get
public float[] get(float[] arr)
Description copied from interface:Matrix4x3dcStore the elements of this matrix as float values in column-major order into the supplied float array.Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
In order to specify an explicit offset into the array, use the method
Matrix4x3dc.get(float[], int).- Specified by:
getin interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4x3dc.get(float[], int)
-
get4x4
public float[] get4x4(float[] arr, int offset)Description copied from interface:Matrix4x3dcStore a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
- Specified by:
get4x4in interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get4x4
public float[] get4x4(float[] arr)
Description copied from interface:Matrix4x3dcStore a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given float array.
In order to specify an explicit offset into the array, use the method
Matrix4x3dc.get4x4(float[], int).- Specified by:
get4x4in interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4x3dc.get4x4(float[], int)
-
get4x4
public double[] get4x4(double[] arr, int offset)Description copied from interface:Matrix4x3dcStore a 4x4 matrix in column-major order into the supplied array at the given offset, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).- Specified by:
get4x4in interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
get4x4
public double[] get4x4(double[] arr)
Description copied from interface:Matrix4x3dcStore a 4x4 matrix in column-major order into the supplied array, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).In order to specify an explicit offset into the array, use the method
Matrix4x3dc.get4x4(double[], int).- Specified by:
get4x4in interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4x3dc.get4x4(double[], int)
-
get4x4
public java.nio.DoubleBuffer get4x4(java.nio.DoubleBuffer buffer)
Description copied from interface:Matrix4x3dcStore a 4x4 matrix in column-major order into the suppliedDoubleBufferat the current bufferposition, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer at which the matrix is stored, use
Matrix4x3dc.get4x4(int, DoubleBuffer), taking the absolute position as parameter.- Specified by:
get4x4in interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.get4x4(int, DoubleBuffer)
-
get4x4
public java.nio.DoubleBuffer get4x4(int index, java.nio.DoubleBuffer buffer)Description copied from interface:Matrix4x3dcStore a 4x4 matrix in column-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).This method will not increment the position of the given DoubleBuffer.
- Specified by:
get4x4in interfaceMatrix4x3dc- Parameters:
index- the absolute position into the DoubleBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
get4x4
public java.nio.ByteBuffer get4x4(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3dcStore a 4x4 matrix in column-major order into the suppliedByteBufferat the current bufferposition, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3dc.get4x4(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
get4x4in interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix in column-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.get4x4(int, ByteBuffer)
-
get4x4
public java.nio.ByteBuffer get4x4(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4x3dcStore a 4x4 matrix in column-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index, where the upper 4x3 submatrix isthisand the last row is(0, 0, 0, 1).This method will not increment the position of the given ByteBuffer.
- Specified by:
get4x4in interfaceMatrix4x3dc- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in column-major order- Returns:
- the passed in buffer
-
getTransposed
public java.nio.DoubleBuffer getTransposed(java.nio.DoubleBuffer buffer)
Description copied from interface:Matrix4x3dcStore this matrix in row-major order into the suppliedDoubleBufferat the current bufferposition.This method will not increment the position of the given DoubleBuffer.
In order to specify the offset into the DoubleBuffer at which the matrix is stored, use
Matrix4x3dc.getTransposed(int, DoubleBuffer), taking the absolute position as parameter.- Specified by:
getTransposedin interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.getTransposed(int, DoubleBuffer)
-
getTransposed
public java.nio.DoubleBuffer getTransposed(int index, java.nio.DoubleBuffer buffer)Description copied from interface:Matrix4x3dcStore this matrix in row-major order into the suppliedDoubleBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given DoubleBuffer.
- Specified by:
getTransposedin interfaceMatrix4x3dc- Parameters:
index- the absolute position into the DoubleBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
public java.nio.ByteBuffer getTransposed(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3dcStore this matrix in row-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3dc.getTransposed(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
getTransposedin interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.getTransposed(int, ByteBuffer)
-
getTransposed
public java.nio.ByteBuffer getTransposed(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4x3dcStore this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
- Specified by:
getTransposedin interfaceMatrix4x3dc- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposed
public java.nio.FloatBuffer getTransposed(java.nio.FloatBuffer buffer)
Description copied from interface:Matrix4x3dcStore this matrix in row-major order into the suppliedFloatBufferat the current bufferposition.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
In order to specify the offset into the FloatBuffer at which the matrix is stored, use
Matrix4x3dc.getTransposed(int, FloatBuffer), taking the absolute position as parameter.- Specified by:
getTransposedin interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.getTransposed(int, FloatBuffer)
-
getTransposed
public java.nio.FloatBuffer getTransposed(int index, java.nio.FloatBuffer buffer)Description copied from interface:Matrix4x3dcStore this matrix in row-major order into the suppliedFloatBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given FloatBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Specified by:
getTransposedin interfaceMatrix4x3dc- Parameters:
index- the absolute position into the FloatBufferbuffer- will receive the values of this matrix in row-major order- Returns:
- the passed in buffer
-
getTransposedFloats
public java.nio.ByteBuffer getTransposedFloats(java.nio.ByteBuffer buffer)
Description copied from interface:Matrix4x3dcStore this matrix as float values in row-major order into the suppliedByteBufferat the current bufferposition.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
In order to specify the offset into the ByteBuffer at which the matrix is stored, use
Matrix4x3dc.getTransposedFloats(int, ByteBuffer), taking the absolute position as parameter.- Specified by:
getTransposedFloatsin interfaceMatrix4x3dc- Parameters:
buffer- will receive the values of this matrix as float values in row-major order at its current position- Returns:
- the passed in buffer
- See Also:
Matrix4x3dc.getTransposedFloats(int, ByteBuffer)
-
getTransposedFloats
public java.nio.ByteBuffer getTransposedFloats(int index, java.nio.ByteBuffer buffer)Description copied from interface:Matrix4x3dcStore this matrix in row-major order into the suppliedByteBufferstarting at the specified absolute buffer position/index.This method will not increment the position of the given ByteBuffer.
Please note that due to this matrix storing double values those values will potentially lose precision when they are converted to float values before being put into the given FloatBuffer.
- Specified by:
getTransposedFloatsin interfaceMatrix4x3dc- Parameters:
index- the absolute position into the ByteBufferbuffer- will receive the values of this matrix as float values in row-major order- Returns:
- the passed in buffer
-
getTransposed
public double[] getTransposed(double[] arr, int offset)Description copied from interface:Matrix4x3dcStore this matrix into the supplied float array in row-major order at the given offset.- Specified by:
getTransposedin interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values intooffset- the offset into the array- Returns:
- the passed in array
-
getTransposed
public double[] getTransposed(double[] arr)
Description copied from interface:Matrix4x3dcStore this matrix into the supplied float array in row-major order.In order to specify an explicit offset into the array, use the method
Matrix4x3dc.getTransposed(double[], int).- Specified by:
getTransposedin interfaceMatrix4x3dc- Parameters:
arr- the array to write the matrix values into- Returns:
- the passed in array
- See Also:
Matrix4x3dc.getTransposed(double[], int)
-
zero
public Matrix4x3d zero()
Set all the values within this matrix to 0.- Returns:
- this
-
scaling
public Matrix4x3d scaling(double factor)
Set this matrix to be a simple scale matrix, which scales all axes uniformly by the given factor.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix, use
scale()instead.- Parameters:
factor- the scale factor in x, y and z- Returns:
- this
- See Also:
scale(double)
-
scaling
public Matrix4x3d scaling(double x, double y, double z)
Set this matrix to be a simple scale matrix.- Parameters:
x- the scale in xy- the scale in yz- the scale in z- Returns:
- this
-
scaling
public Matrix4x3d scaling(Vector3dc xyz)
Set this matrix to be a simple scale matrix which scales the base axes byxyz.x,xyz.yandxyz.z, respectively.The resulting matrix can be multiplied against another transformation matrix to obtain an additional scaling.
In order to post-multiply a scaling transformation directly to a matrix use
scale()instead.- Parameters:
xyz- the scale in x, y and z, respectively- Returns:
- this
- See Also:
scale(Vector3dc)
-
rotation
public Matrix4x3d rotation(double angle, double x, double y, double z)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
From Wikipedia
- Parameters:
angle- the angle in radiansx- the x-coordinate of the axis to rotate abouty- the y-coordinate of the axis to rotate aboutz- the z-coordinate of the axis to rotate about- Returns:
- this
-
rotationX
public Matrix4x3d rotationX(double ang)
Set this matrix to a rotation transformation about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotationY
public Matrix4x3d rotationY(double ang)
Set this matrix to a rotation transformation about the Y axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotationZ
public Matrix4x3d rotationZ(double ang)
Set this matrix to a rotation transformation about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotationXYZ
public Matrix4x3d rotationXYZ(double angleX, double angleY, double angleZ)
Set this matrix to a rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationX(angleX).rotateY(angleY).rotateZ(angleZ)- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Z- Returns:
- this
-
rotationZYX
public Matrix4x3d rotationZYX(double angleZ, double angleY, double angleX)
Set this matrix to a rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationZ(angleZ).rotateY(angleY).rotateX(angleX)- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about X- Returns:
- this
-
rotationYXZ
public Matrix4x3d rotationYXZ(double angleY, double angleX, double angleZ)
Set this matrix to a rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
rotationY(angleY).rotateX(angleX).rotateZ(angleZ)- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Z- Returns:
- this
-
setRotationXYZ
public Matrix4x3d setRotationXYZ(double angleX, double angleY, double angleZ)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Z- Returns:
- this
-
setRotationZYX
public Matrix4x3d setRotationZYX(double angleZ, double angleY, double angleX)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about X- Returns:
- this
-
setRotationYXZ
public Matrix4x3d setRotationYXZ(double angleY, double angleX, double angleZ)
Set only the left 3x3 submatrix of this matrix to a rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Z- Returns:
- this
-
rotation
public Matrix4x3d rotation(double angle, Vector3dc axis)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angle- the angle in radiansaxis- the axis to rotate about- Returns:
- this
-
rotation
public Matrix4x3d rotation(double angle, Vector3fc axis)
Set this matrix to a rotation matrix which rotates the given radians about a given axis.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
- Parameters:
angle- the angle in radiansaxis- the axis to rotate about- Returns:
- this
-
transform
public Vector4d transform(Vector4d v)
Description copied from interface:Matrix4x3dcTransform/multiply the given vector by this matrix and store the result in that vector.- Specified by:
transformin interfaceMatrix4x3dc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Vector4d.mul(Matrix4x3dc)
-
transform
public Vector4d transform(Vector4dc v, Vector4d dest)
Description copied from interface:Matrix4x3dcTransform/multiply the given vector by this matrix and store the result indest.- Specified by:
transformin interfaceMatrix4x3dc- Parameters:
v- the vector to transformdest- will contain the result- Returns:
- dest
- See Also:
Vector4d.mul(Matrix4x3dc, Vector4d)
-
transformPosition
public Vector3d transformPosition(Vector3d v)
Description copied from interface:Matrix4x3dcTransform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.
In order to store the result in another vector, use
Matrix4x3dc.transformPosition(Vector3dc, Vector3d).- Specified by:
transformPositionin interfaceMatrix4x3dc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
- See Also:
Matrix4x3dc.transformPosition(Vector3dc, Vector3d),Matrix4x3dc.transform(Vector4d)
-
transformPosition
public Vector3d transformPosition(Vector3dc v, Vector3d dest)
Description copied from interface:Matrix4x3dcTransform/multiply the given 3D-vector, as if it was a 4D-vector with w=1, by this matrix and store the result indest.The given 3D-vector is treated as a 4D-vector with its w-component being 1.0, so it will represent a position/location in 3D-space rather than a direction.
In order to store the result in the same vector, use
Matrix4x3dc.transformPosition(Vector3d).- Specified by:
transformPositionin interfaceMatrix4x3dc- Parameters:
v- the vector to transformdest- will hold the result- Returns:
- dest
- See Also:
Matrix4x3dc.transformPosition(Vector3d),Matrix4x3dc.transform(Vector4dc, Vector4d)
-
transformDirection
public Vector3d transformDirection(Vector3d v)
Description copied from interface:Matrix4x3dcTransform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result in that vector.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in another vector, use
Matrix4x3dc.transformDirection(Vector3dc, Vector3d).- Specified by:
transformDirectionin interfaceMatrix4x3dc- Parameters:
v- the vector to transform and to hold the final result- Returns:
- v
-
transformDirection
public Vector3d transformDirection(Vector3dc v, Vector3d dest)
Description copied from interface:Matrix4x3dcTransform/multiply the given 3D-vector, as if it was a 4D-vector with w=0, by this matrix and store the result indest.The given 3D-vector is treated as a 4D-vector with its w-component being
0.0, so it will represent a direction in 3D-space rather than a position. This method will therefore not take the translation part of the matrix into account.In order to store the result in the same vector, use
Matrix4x3dc.transformDirection(Vector3d).- Specified by:
transformDirectionin interfaceMatrix4x3dc- Parameters:
v- the vector to transform and to hold the final resultdest- will hold the result- Returns:
- dest
-
set3x3
public Matrix4x3d set3x3(Matrix3dc mat)
Set the left 3x3 submatrix of thisMatrix4x3dto the givenMatrix3dcand don't change the other elements.- Parameters:
mat- the 3x3 matrix- Returns:
- this
-
set3x3
public Matrix4x3d set3x3(Matrix3fc mat)
Set the left 3x3 submatrix of thisMatrix4x3dto the givenMatrix3fcand don't change the other elements.- Parameters:
mat- the 3x3 matrix- Returns:
- this
-
scale
public Matrix4x3d scale(Vector3dc xyz, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply scaling tothismatrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Specified by:
scalein interfaceMatrix4x3dc- Parameters:
xyz- the factors of the x, y and z component, respectivelydest- will hold the result- Returns:
- dest
-
scale
public Matrix4x3d scale(Vector3dc xyz)
Apply scaling to this matrix by scaling the base axes by the givenxyz.x,xyz.yandxyz.zfactors, respectively.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
xyz- the factors of the x, y and z component, respectively- Returns:
- this
-
scale
public Matrix4x3d scale(double x, double y, double z, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Specified by:
scalein interfaceMatrix4x3dc- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z componentdest- will hold the result- Returns:
- dest
-
scale
public Matrix4x3d scale(double x, double y, double z)
Apply scaling tothismatrix by scaling the base axes by the given x, y and z factors.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z component- Returns:
- this
-
scale
public Matrix4x3d scale(double xyz, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply scaling to this matrix by uniformly scaling all base axes by the given xyz factor and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Specified by:
scalein interfaceMatrix4x3dc- Parameters:
xyz- the factor for all componentsdest- will hold the result- Returns:
- dest
- See Also:
Matrix4x3dc.scale(double, double, double, Matrix4x3d)
-
scale
public Matrix4x3d scale(double xyz)
Apply scaling to this matrix by uniformly scaling all base axes by the given xyz factor.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
xyz- the factor for all components- Returns:
- this
- See Also:
scale(double, double, double)
-
scaleXY
public Matrix4x3d scaleXY(double x, double y, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply scaling to this matrix by by scaling the X axis byxand the Y axis byyand store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Specified by:
scaleXYin interfaceMatrix4x3dc- Parameters:
x- the factor of the x componenty- the factor of the y componentdest- will hold the result- Returns:
- dest
-
scaleXY
public Matrix4x3d scaleXY(double x, double y)
Apply scaling to this matrix by scaling the X axis byxand the Y axis byy.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!- Parameters:
x- the factor of the x componenty- the factor of the y component- Returns:
- this
-
scaleAround
public Matrix4x3d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply scaling tothismatrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(sx, sy, sz).translate(-ox, -oy, -oz)- Specified by:
scaleAroundin interfaceMatrix4x3dc- Parameters:
sx- the scaling factor of the x componentsy- the scaling factor of the y componentsz- the scaling factor of the z componentox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origindest- will hold the result- Returns:
- dest
-
scaleAround
public Matrix4x3d scaleAround(double sx, double sy, double sz, double ox, double oy, double oz)
Apply scaling to this matrix by scaling the base axes by the given sx, sy and sz factors while using(ox, oy, oz)as the scaling origin.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).scale(sx, sy, sz).translate(-ox, -oy, -oz)- Parameters:
sx- the scaling factor of the x componentsy- the scaling factor of the y componentsz- the scaling factor of the z componentox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origin- Returns:
- this
-
scaleAround
public Matrix4x3d scaleAround(double factor, double ox, double oy, double oz)
Apply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).scale(factor).translate(-ox, -oy, -oz)- Parameters:
factor- the scaling factor for all three axesox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origin- Returns:
- this
-
scaleAround
public Matrix4x3d scaleAround(double factor, double ox, double oy, double oz, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply scaling to this matrix by scaling all three base axes by the givenfactorwhile using(ox, oy, oz)as the scaling origin, and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the scaling will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).scale(factor).translate(-ox, -oy, -oz)- Specified by:
scaleAroundin interfaceMatrix4x3dc- Parameters:
factor- the scaling factor for all three axesox- the x coordinate of the scaling originoy- the y coordinate of the scaling originoz- the z coordinate of the scaling origindest- will hold the result- Returns:
- this
-
scaleLocal
public Matrix4x3d scaleLocal(double x, double y, double z, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcPre-multiply scaling tothismatrix by scaling the base axes by the given x, y and z factors and store the result indest.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!- Specified by:
scaleLocalin interfaceMatrix4x3dc- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z componentdest- will hold the result- Returns:
- dest
-
scaleLocal
public Matrix4x3d scaleLocal(double x, double y, double z)
Pre-multiply scaling to this matrix by scaling the base axes by the given x, y and z factors.If
Misthismatrix andSthe scaling matrix, then the new matrix will beS * M. So when transforming a vectorvwith the new matrix by usingS * M * v, the scaling will be applied last!- Parameters:
x- the factor of the x componenty- the factor of the y componentz- the factor of the z component- Returns:
- this
-
rotate
public Matrix4x3d rotate(double ang, double x, double y, double z, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!- Specified by:
rotatein interfaceMatrix4x3dc- Parameters:
ang- the angle is in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
-
rotate
public Matrix4x3d rotate(double ang, double x, double y, double z)
Apply rotation to this matrix by rotating the given amount of radians about the given axis specified as x, y and z components.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation().- Parameters:
ang- the angle is in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axis- Returns:
- this
- See Also:
rotation(double, double, double, double)
-
rotateTranslation
public Matrix4x3d rotateTranslation(double ang, double x, double y, double z, Matrix4x3d dest)
Apply rotation to this matrix, which is assumed to only contain a translation, by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.This method assumes
thisto only contain a translation.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!In order to set the matrix to a rotation matrix without post-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Specified by:
rotateTranslationin interfaceMatrix4x3dc- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
- See Also:
rotation(double, double, double, double)
-
rotateAround
public Matrix4x3d rotateAround(Quaterniondc quat, double ox, double oy, double oz)
Apply the rotation transformation of the givenQuaterniondcto this matrix while using(ox, oy, oz)as the rotation origin.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!This method is equivalent to calling:
translate(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origin- Returns:
- this
-
rotateAround
public Matrix4x3d rotateAround(Quaterniondc quat, double ox, double oy, double oz, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix while using(ox, oy, oz)as the rotation origin, and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!This method is equivalent to calling:
translate(ox, oy, oz, dest).rotate(quat).translate(-ox, -oy, -oz)Reference: http://en.wikipedia.org
- Specified by:
rotateAroundin interfaceMatrix4x3dc- Parameters:
quat- theQuaterniondcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origindest- will hold the result- Returns:
- dest
-
rotationAround
public Matrix4x3d rotationAround(Quaterniondc quat, double ox, double oy, double oz)
Set this matrix to a transformation composed of a rotation of the specifiedQuaterniondcwhile using(ox, oy, oz)as the rotation origin.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(ox, oy, oz).rotate(quat).translate(-ox, -oy, -oz)Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondcox- the x coordinate of the rotation originoy- the y coordinate of the rotation originoz- the z coordinate of the rotation origin- Returns:
- this
-
rotateLocal
public Matrix4x3d rotateLocal(double ang, double x, double y, double z, Matrix4x3d dest)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis and store the result indest.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Specified by:
rotateLocalin interfaceMatrix4x3dc- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axisdest- will hold the result- Returns:
- dest
- See Also:
rotation(double, double, double, double)
-
rotateLocal
public Matrix4x3d rotateLocal(double ang, double x, double y, double z)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the specified(x, y, z)axis.The axis described by the three components needs to be a unit vector.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotation().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radiansx- the x component of the axisy- the y component of the axisz- the z component of the axis- Returns:
- this
- See Also:
rotation(double, double, double, double)
-
rotateLocalX
public Matrix4x3d rotateLocalX(double ang, Matrix4x3d dest)
Pre-multiply a rotation around the X axis to this matrix by rotating the given amount of radians about the X axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationX().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the X axisdest- will hold the result- Returns:
- dest
- See Also:
rotationX(double)
-
rotateLocalX
public Matrix4x3d rotateLocalX(double ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationX().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the X axis- Returns:
- this
- See Also:
rotationX(double)
-
rotateLocalY
public Matrix4x3d rotateLocalY(double ang, Matrix4x3d dest)
Pre-multiply a rotation around the Y axis to this matrix by rotating the given amount of radians about the Y axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the Y axisdest- will hold the result- Returns:
- dest
- See Also:
rotationY(double)
-
rotateLocalY
public Matrix4x3d rotateLocalY(double ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Y axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the Y axis- Returns:
- this
- See Also:
rotationY(double)
-
rotateLocalZ
public Matrix4x3d rotateLocalZ(double ang, Matrix4x3d dest)
Pre-multiply a rotation around the Z axis to this matrix by rotating the given amount of radians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationZ().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the Z axisdest- will hold the result- Returns:
- dest
- See Also:
rotationZ(double)
-
rotateLocalZ
public Matrix4x3d rotateLocalZ(double ang)
Pre-multiply a rotation to this matrix by rotating the given amount of radians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beR * M. So when transforming a vectorvwith the new matrix by usingR * M * v, the rotation will be applied last!In order to set the matrix to a rotation matrix without pre-multiplying the rotation transformation, use
rotationY().Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians to rotate about the Z axis- Returns:
- this
- See Also:
rotationY(double)
-
translate
public Matrix4x3d translate(Vector3dc offset)
Apply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(Vector3dc).- Parameters:
offset- the number of units in x, y and z by which to translate- Returns:
- this
- See Also:
translation(Vector3dc)
-
translate
public Matrix4x3d translate(Vector3dc offset, Matrix4x3d dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(Vector3dc).- Specified by:
translatein interfaceMatrix4x3dc- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
- See Also:
translation(Vector3dc)
-
translate
public Matrix4x3d translate(Vector3fc offset)
Apply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(Vector3fc).- Parameters:
offset- the number of units in x, y and z by which to translate- Returns:
- this
- See Also:
translation(Vector3fc)
-
translate
public Matrix4x3d translate(Vector3fc offset, Matrix4x3d dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(Vector3fc).- Specified by:
translatein interfaceMatrix4x3dc- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
- See Also:
translation(Vector3fc)
-
translate
public Matrix4x3d translate(double x, double y, double z, Matrix4x3d dest)
Apply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(double, double, double).- Specified by:
translatein interfaceMatrix4x3dc- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in zdest- will hold the result- Returns:
- dest
- See Also:
translation(double, double, double)
-
translate
public Matrix4x3d translate(double x, double y, double z)
Apply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beM * T. So when transforming a vectorvwith the new matrix by usingM * T * v, the translation will be applied first!In order to set the matrix to a translation transformation without post-multiplying it, use
translation(double, double, double).- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in z- Returns:
- this
- See Also:
translation(double, double, double)
-
translateLocal
public Matrix4x3d translateLocal(Vector3fc offset)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(Vector3fc).- Parameters:
offset- the number of units in x, y and z by which to translate- Returns:
- this
- See Also:
translation(Vector3fc)
-
translateLocal
public Matrix4x3d translateLocal(Vector3fc offset, Matrix4x3d dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(Vector3fc).- Specified by:
translateLocalin interfaceMatrix4x3dc- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
- See Also:
translation(Vector3fc)
-
translateLocal
public Matrix4x3d translateLocal(Vector3dc offset)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(Vector3dc).- Parameters:
offset- the number of units in x, y and z by which to translate- Returns:
- this
- See Also:
translation(Vector3dc)
-
translateLocal
public Matrix4x3d translateLocal(Vector3dc offset, Matrix4x3d dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(Vector3dc).- Specified by:
translateLocalin interfaceMatrix4x3dc- Parameters:
offset- the number of units in x, y and z by which to translatedest- will hold the result- Returns:
- dest
- See Also:
translation(Vector3dc)
-
translateLocal
public Matrix4x3d translateLocal(double x, double y, double z, Matrix4x3d dest)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z and store the result indest.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(double, double, double).- Specified by:
translateLocalin interfaceMatrix4x3dc- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in zdest- will hold the result- Returns:
- dest
- See Also:
translation(double, double, double)
-
translateLocal
public Matrix4x3d translateLocal(double x, double y, double z)
Pre-multiply a translation to this matrix by translating by the given number of units in x, y and z.If
Misthismatrix andTthe translation matrix, then the new matrix will beT * M. So when transforming a vectorvwith the new matrix by usingT * M * v, the translation will be applied last!In order to set the matrix to a translation transformation without pre-multiplying it, use
translation(double, double, double).- Parameters:
x- the offset to translate in xy- the offset to translate in yz- the offset to translate in z- Returns:
- this
- See Also:
translation(double, double, double)
-
writeExternal
public void writeExternal(java.io.ObjectOutput out) throws java.io.IOException- Specified by:
writeExternalin interfacejava.io.Externalizable- Throws:
java.io.IOException
-
readExternal
public void readExternal(java.io.ObjectInput in) throws java.io.IOException- Specified by:
readExternalin interfacejava.io.Externalizable- Throws:
java.io.IOException
-
rotateX
public Matrix4x3d rotateX(double ang, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply rotation about the X axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Specified by:
rotateXin interfaceMatrix4x3dc- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateX
public Matrix4x3d rotateX(double ang)
Apply rotation about the X axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotateY
public Matrix4x3d rotateY(double ang, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply rotation about the Y axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Specified by:
rotateYin interfaceMatrix4x3dc- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateY
public Matrix4x3d rotateY(double ang)
Apply rotation about the Y axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotateZ
public Matrix4x3d rotateZ(double ang, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply rotation about the Z axis to this matrix by rotating the given amount of radians and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Specified by:
rotateZin interfaceMatrix4x3dc- Parameters:
ang- the angle in radiansdest- will hold the result- Returns:
- dest
-
rotateZ
public Matrix4x3d rotateZ(double ang)
Apply rotation about the Z axis to this matrix by rotating the given amount of radians.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!Reference: http://en.wikipedia.org
- Parameters:
ang- the angle in radians- Returns:
- this
-
rotateXYZ
public Matrix4x3d rotateXYZ(Vector3d angles)
Apply rotation ofangles.xradians about the X axis, followed by a rotation ofangles.yradians about the Y axis and followed by a rotation ofangles.zradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angles.x).rotateY(angles.y).rotateZ(angles.z)- Parameters:
angles- the Euler angles- Returns:
- this
-
rotateXYZ
public Matrix4x3d rotateXYZ(double angleX, double angleY, double angleZ)
Apply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX).rotateY(angleY).rotateZ(angleZ)- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Z- Returns:
- this
-
rotateXYZ
public Matrix4x3d rotateXYZ(double angleX, double angleY, double angleZ, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply rotation ofangleXradians about the X axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateX(angleX, dest).rotateY(angleY).rotateZ(angleZ)- Specified by:
rotateXYZin interfaceMatrix4x3dc- Parameters:
angleX- the angle to rotate about XangleY- the angle to rotate about YangleZ- the angle to rotate about Zdest- will hold the result- Returns:
- dest
-
rotateZYX
public Matrix4x3d rotateZYX(Vector3d angles)
Apply rotation ofangles.zradians about the Z axis, followed by a rotation ofangles.yradians about the Y axis and followed by a rotation ofangles.xradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angles.z).rotateY(angles.y).rotateX(angles.x)- Parameters:
angles- the Euler angles- Returns:
- this
-
rotateZYX
public Matrix4x3d rotateZYX(double angleZ, double angleY, double angleX)
Apply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ).rotateY(angleY).rotateX(angleX)- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about X- Returns:
- this
-
rotateZYX
public Matrix4x3d rotateZYX(double angleZ, double angleY, double angleX, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply rotation ofangleZradians about the Z axis, followed by a rotation ofangleYradians about the Y axis and followed by a rotation ofangleXradians about the X axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateZ(angleZ, dest).rotateY(angleY).rotateX(angleX)- Specified by:
rotateZYXin interfaceMatrix4x3dc- Parameters:
angleZ- the angle to rotate about ZangleY- the angle to rotate about YangleX- the angle to rotate about Xdest- will hold the result- Returns:
- dest
-
rotateYXZ
public Matrix4x3d rotateYXZ(Vector3d angles)
Apply rotation ofangles.yradians about the Y axis, followed by a rotation ofangles.xradians about the X axis and followed by a rotation ofangles.zradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateY(angles.y).rotateX(angles.x).rotateZ(angles.z)- Parameters:
angles- the Euler angles- Returns:
- this
-
rotateYXZ
public Matrix4x3d rotateYXZ(double angleY, double angleX, double angleZ)
Apply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY).rotateX(angleX).rotateZ(angleZ)- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Z- Returns:
- this
-
rotateYXZ
public Matrix4x3d rotateYXZ(double angleY, double angleX, double angleZ, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply rotation ofangleYradians about the Y axis, followed by a rotation ofangleXradians about the X axis and followed by a rotation ofangleZradians about the Z axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andRthe rotation matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the rotation will be applied first!This method is equivalent to calling:
rotateY(angleY, dest).rotateX(angleX).rotateZ(angleZ)- Specified by:
rotateYXZin interfaceMatrix4x3dc- Parameters:
angleY- the angle to rotate about YangleX- the angle to rotate about XangleZ- the angle to rotate about Zdest- will hold the result- Returns:
- dest
-
rotation
public Matrix4x3d rotation(AxisAngle4f angleAxis)
Set this matrix to a rotation transformation using the givenAxisAngle4f.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()instead.Reference: http://en.wikipedia.org
- Parameters:
angleAxis- theAxisAngle4f(needs to benormalized)- Returns:
- this
- See Also:
rotate(AxisAngle4f)
-
rotation
public Matrix4x3d rotation(AxisAngle4d angleAxis)
Set this matrix to a rotation transformation using the givenAxisAngle4d.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()instead.Reference: http://en.wikipedia.org
- Parameters:
angleAxis- theAxisAngle4d(needs to benormalized)- Returns:
- this
- See Also:
rotate(AxisAngle4d)
-
rotation
public Matrix4x3d rotation(Quaterniondc quat)
Set this matrix to the rotation - and possibly scaling - transformation of the givenQuaterniondc.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()instead.Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondc- Returns:
- this
- See Also:
rotate(Quaterniondc)
-
rotation
public Matrix4x3d rotation(Quaternionfc quat)
Set this matrix to the rotation - and possibly scaling - transformation of the givenQuaternionfc.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
The resulting matrix can be multiplied against another transformation matrix to obtain an additional rotation.
In order to apply the rotation transformation to an existing transformation, use
rotate()instead.Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfc- Returns:
- this
- See Also:
rotate(Quaternionfc)
-
translationRotateScale
public Matrix4x3d translationRotateScale(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz)
Setthismatrix toT * R * S, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw), andSis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz).When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternionsx- the scaling factor for the x-axissy- the scaling factor for the y-axissz- the scaling factor for the z-axis- Returns:
- this
- See Also:
translation(double, double, double),rotate(Quaterniondc),scale(double, double, double)
-
translationRotateScale
public Matrix4x3d translationRotateScale(Vector3fc translation, Quaternionfc quat, Vector3fc scale)
Setthismatrix toT * R * S, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales the axes byscale.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat).scale(scale)- Parameters:
translation- the translationquat- the quaternion representing a rotationscale- the scaling factors- Returns:
- this
- See Also:
translation(Vector3fc),rotate(Quaternionfc)
-
translationRotateScale
public Matrix4x3d translationRotateScale(Vector3dc translation, Quaterniondc quat, Vector3dc scale)
Setthismatrix toT * R * S, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion, andSis a scaling transformation which scales the axes byscale.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat).scale(scale)- Parameters:
translation- the translationquat- the quaternion representing a rotationscale- the scaling factors- Returns:
- this
- See Also:
translation(Vector3dc),rotate(Quaterniondc)
-
translationRotateScaleMul
public Matrix4x3d translationRotateScaleMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, double sx, double sy, double sz, Matrix4x3dc m)
Setthismatrix toT * R * S * M, whereTis a translation by the given(tx, ty, tz),Ris a rotation transformation specified by the quaternion(qx, qy, qz, qw),Sis a scaling transformation which scales the three axes x, y and z by(sx, sy, sz).When transforming a vector by the resulting matrix the transformation described by
Mwill be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).scale(sx, sy, sz).mul(m)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternionsx- the scaling factor for the x-axissy- the scaling factor for the y-axissz- the scaling factor for the z-axism- the matrix to multiply by- Returns:
- this
- See Also:
translation(double, double, double),rotate(Quaterniondc),scale(double, double, double),mul(Matrix4x3dc)
-
translationRotateScaleMul
public Matrix4x3d translationRotateScaleMul(Vector3dc translation, Quaterniondc quat, Vector3dc scale, Matrix4x3dc m)
Setthismatrix toT * R * S * M, whereTis the giventranslation,Ris a rotation transformation specified by the given quaternion,Sis a scaling transformation which scales the axes byscale.When transforming a vector by the resulting matrix the transformation described by
Mwill be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat).scale(scale).mul(m)- Parameters:
translation- the translationquat- the quaternion representing a rotationscale- the scaling factorsm- the matrix to multiply by- Returns:
- this
- See Also:
translation(Vector3dc),rotate(Quaterniondc),mul(Matrix4x3dc)
-
translationRotate
public Matrix4x3d translationRotate(double tx, double ty, double tz, Quaterniondc quat)
Setthismatrix toT * R, whereTis a translation by the given(tx, ty, tz)andRis a rotation transformation specified by the given quaternion.When transforming a vector by the resulting matrix the rotation transformation will be applied first and then the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentquat- the quaternion representing a rotation- Returns:
- this
- See Also:
translation(double, double, double),rotate(Quaterniondc)
-
translationRotate
public Matrix4x3d translationRotate(double tx, double ty, double tz, double qx, double qy, double qz, double qw)
Setthismatrix toT * R, whereTis a translation by the given(tx, ty, tz)andRis a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw).When transforming a vector by the resulting matrix the rotation - and possibly scaling - transformation will be applied first and then the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternion- Returns:
- this
- See Also:
translation(double, double, double),rotate(Quaterniondc)
-
translationRotate
public Matrix4x3d translationRotate(Vector3dc translation, Quaterniondc quat)
Setthismatrix toT * R, whereTis the giventranslationandRis a rotation transformation specified by the given quaternion.When transforming a vector by the resulting matrix the scaling transformation will be applied first, then the rotation and at last the translation.
When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(translation).rotate(quat)- Parameters:
translation- the translationquat- the quaternion representing a rotation- Returns:
- this
- See Also:
translation(Vector3dc),rotate(Quaterniondc)
-
translationRotateMul
public Matrix4x3d translationRotateMul(double tx, double ty, double tz, Quaternionfc quat, Matrix4x3dc mat)
Setthismatrix toT * R * M, whereTis a translation by the given(tx, ty, tz),Ris a rotation - and possibly scaling - transformation specified by the given quaternion andMis the given matrixmat.When transforming a vector by the resulting matrix the transformation described by
Mwill be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).mul(mat)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentquat- the quaternion representing a rotationmat- the matrix to multiply with- Returns:
- this
- See Also:
translation(double, double, double),rotate(Quaternionfc),mul(Matrix4x3dc)
-
translationRotateMul
public Matrix4x3d translationRotateMul(double tx, double ty, double tz, double qx, double qy, double qz, double qw, Matrix4x3dc mat)
Setthismatrix toT * R * M, whereTis a translation by the given(tx, ty, tz),Ris a rotation - and possibly scaling - transformation specified by the quaternion(qx, qy, qz, qw)andMis the given matrixmatWhen transforming a vector by the resulting matrix the transformation described by
Mwill be applied first, then the scaling, then rotation and at last the translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
This method is equivalent to calling:
translation(tx, ty, tz).rotate(quat).mul(mat)- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternionmat- the matrix to multiply with- Returns:
- this
- See Also:
translation(double, double, double),rotate(Quaternionfc),mul(Matrix4x3dc)
-
translationRotateInvert
public Matrix4x3d translationRotateInvert(double tx, double ty, double tz, double qx, double qy, double qz, double qw)
Setthismatrix to(T * R)-1, whereTis a translation by the given(tx, ty, tz)andRis a rotation transformation specified by the quaternion(qx, qy, qz, qw).This method is equivalent to calling:
translationRotate(...).invert()- Parameters:
tx- the number of units by which to translate the x-componentty- the number of units by which to translate the y-componenttz- the number of units by which to translate the z-componentqx- the x-coordinate of the vector part of the quaternionqy- the y-coordinate of the vector part of the quaternionqz- the z-coordinate of the vector part of the quaternionqw- the scalar part of the quaternion- Returns:
- this
- See Also:
translationRotate(double, double, double, double, double, double, double),invert()
-
translationRotateInvert
public Matrix4x3d translationRotateInvert(Vector3dc translation, Quaterniondc quat)
Setthismatrix to(T * R)-1, whereTis the giventranslationandRis a rotation transformation specified by the given quaternion.This method is equivalent to calling:
translationRotate(...).invert()- Parameters:
translation- the translationquat- the quaternion representing a rotation- Returns:
- this
- See Also:
translationRotate(Vector3dc, Quaterniondc),invert()
-
rotate
public Matrix4x3d rotate(Quaterniondc quat, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaterniondc).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4x3dc- Parameters:
quat- theQuaterniondcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaterniondc)
-
rotate
public Matrix4x3d rotate(Quaternionfc quat, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4x3dc- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotate
public Matrix4x3d rotate(Quaterniondc quat)
Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaterniondc).Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondc- Returns:
- this
- See Also:
rotation(Quaterniondc)
-
rotate
public Matrix4x3d rotate(Quaternionfc quat)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfc- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotateTranslation
public Matrix4x3d rotateTranslation(Quaterniondc quat, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix, which is assumed to only contain a translation, and store the result indest.This method assumes
thisto only contain a translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaterniondc).Reference: http://en.wikipedia.org
- Specified by:
rotateTranslationin interfaceMatrix4x3dc- Parameters:
quat- theQuaterniondcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaterniondc)
-
rotateTranslation
public Matrix4x3d rotateTranslation(Quaternionfc quat, Matrix4x3d dest)
Apply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix, which is assumed to only contain a translation, and store the result indest.This method assumes
thisto only contain a translation.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beM * Q. So when transforming a vectorvwith the new matrix by usingM * Q * v, the quaternion rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Specified by:
rotateTranslationin interfaceMatrix4x3dc- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateLocal
public Matrix4x3d rotateLocal(Quaterniondc quat, Matrix4x3d dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaterniondcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaterniondc).Reference: http://en.wikipedia.org
- Specified by:
rotateLocalin interfaceMatrix4x3dc- Parameters:
quat- theQuaterniondcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaterniondc)
-
rotateLocal
public Matrix4x3d rotateLocal(Quaterniondc quat)
Pre-multiply the rotation transformation of the givenQuaterniondcto this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaterniondc).Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaterniondc- Returns:
- this
- See Also:
rotation(Quaterniondc)
-
rotateLocal
public Matrix4x3d rotateLocal(Quaternionfc quat, Matrix4x3d dest)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Specified by:
rotateLocalin interfaceMatrix4x3dc- Parameters:
quat- theQuaternionfcdest- will hold the result- Returns:
- dest
- See Also:
rotation(Quaternionfc)
-
rotateLocal
public Matrix4x3d rotateLocal(Quaternionfc quat)
Pre-multiply the rotation - and possibly scaling - transformation of the givenQuaternionfcto this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andQthe rotation matrix obtained from the given quaternion, then the new matrix will beQ * M. So when transforming a vectorvwith the new matrix by usingQ * M * v, the quaternion rotation will be applied last!In order to set the matrix to a rotation transformation without pre-multiplying, use
rotation(Quaternionfc).Reference: http://en.wikipedia.org
- Parameters:
quat- theQuaternionfc- Returns:
- this
- See Also:
rotation(Quaternionfc)
-
rotate
public Matrix4x3d rotate(AxisAngle4f axisAngle)
Apply a rotation transformation, rotating about the givenAxisAngle4f, to this matrix.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4f, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4frotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4f).Reference: http://en.wikipedia.org
- Parameters:
axisAngle- theAxisAngle4f(needs to benormalized)- Returns:
- this
- See Also:
rotate(double, double, double, double),rotation(AxisAngle4f)
-
rotate
public Matrix4x3d rotate(AxisAngle4f axisAngle, Matrix4x3d dest)
Apply a rotation transformation, rotating about the givenAxisAngle4fand store the result indest.The axis described by the
axisvector needs to be a unit vector.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4f, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4frotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4f).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4x3dc- Parameters:
axisAngle- theAxisAngle4f(needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double),rotation(AxisAngle4f)
-
rotate
public Matrix4x3d rotate(AxisAngle4d axisAngle)
Apply a rotation transformation, rotating about the givenAxisAngle4d, to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4d, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4drotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4d).Reference: http://en.wikipedia.org
- Parameters:
axisAngle- theAxisAngle4d(needs to benormalized)- Returns:
- this
- See Also:
rotate(double, double, double, double),rotation(AxisAngle4d)
-
rotate
public Matrix4x3d rotate(AxisAngle4d axisAngle, Matrix4x3d dest)
Apply a rotation transformation, rotating about the givenAxisAngle4dand store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the givenAxisAngle4d, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, theAxisAngle4drotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(AxisAngle4d).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4x3dc- Parameters:
axisAngle- theAxisAngle4d(needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double),rotation(AxisAngle4d)
-
rotate
public Matrix4x3d rotate(double angle, Vector3dc axis)
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given angle and axis, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(double, Vector3dc).Reference: http://en.wikipedia.org
- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)- Returns:
- this
- See Also:
rotate(double, double, double, double),rotation(double, Vector3dc)
-
rotate
public Matrix4x3d rotate(double angle, Vector3dc axis, Matrix4x3d dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given angle and axis, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(double, Vector3dc).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4x3dc- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double),rotation(double, Vector3dc)
-
rotate
public Matrix4x3d rotate(double angle, Vector3fc axis)
Apply a rotation transformation, rotating the given radians about the specified axis, to this matrix.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given angle and axis, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(double, Vector3fc).Reference: http://en.wikipedia.org
- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)- Returns:
- this
- See Also:
rotate(double, double, double, double),rotation(double, Vector3fc)
-
rotate
public Matrix4x3d rotate(double angle, Vector3fc axis, Matrix4x3d dest)
Apply a rotation transformation, rotating the given radians about the specified axis and store the result indest.When used with a right-handed coordinate system, the produced rotation will rotate a vector counter-clockwise around the rotation axis, when viewing along the negative axis direction towards the origin. When used with a left-handed coordinate system, the rotation is clockwise.
If
Misthismatrix andAthe rotation matrix obtained from the given angle and axis, then the new matrix will beM * A. So when transforming a vectorvwith the new matrix by usingM * A * v, the axis-angle rotation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying, use
rotation(double, Vector3fc).Reference: http://en.wikipedia.org
- Specified by:
rotatein interfaceMatrix4x3dc- Parameters:
angle- the angle in radiansaxis- the rotation axis (needs to benormalized)dest- will hold the result- Returns:
- dest
- See Also:
rotate(double, double, double, double),rotation(double, Vector3fc)
-
getRow
public Vector4d getRow(int row, Vector4d dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix4x3dcGet the row at the givenrowindex, starting with0.- Specified by:
getRowin interfaceMatrix4x3dc- Parameters:
row- the row index in[0..2]dest- will hold the row components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException- ifrowis not in[0..2]
-
setRow
public Matrix4x3d setRow(int row, Vector4dc src) throws java.lang.IndexOutOfBoundsException
Set the row at the givenrowindex, starting with0.- Parameters:
row- the row index in[0..2]src- the row components to set- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException- ifrowis not in[0..2]
-
getColumn
public Vector3d getColumn(int column, Vector3d dest) throws java.lang.IndexOutOfBoundsException
Description copied from interface:Matrix4x3dcGet the column at the givencolumnindex, starting with0.- Specified by:
getColumnin interfaceMatrix4x3dc- Parameters:
column- the column index in[0..3]dest- will hold the column components- Returns:
- the passed in destination
- Throws:
java.lang.IndexOutOfBoundsException- ifcolumnis not in[0..3]
-
setColumn
public Matrix4x3d setColumn(int column, Vector3dc src) throws java.lang.IndexOutOfBoundsException
Set the column at the givencolumnindex, starting with0.- Parameters:
column- the column index in[0..3]src- the column components to set- Returns:
- this
- Throws:
java.lang.IndexOutOfBoundsException- ifcolumnis not in[0..3]
-
normal
public Matrix4x3d normal()
Compute a normal matrix from the left 3x3 submatrix ofthisand store it into the left 3x3 submatrix ofthis. All other values ofthiswill be set toidentity.The normal matrix of
mis the transpose of the inverse ofm.Please note that, if
thisis an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethisitself is its normal matrix. In that case, useset3x3(Matrix4x3dc)to set a given Matrix4x3d to only the left 3x3 submatrix of this matrix.- Returns:
- this
- See Also:
set3x3(Matrix4x3dc)
-
normal
public Matrix4x3d normal(Matrix4x3d dest)
Compute a normal matrix from the left 3x3 submatrix ofthisand store it into the left 3x3 submatrix ofdest. All other values ofdestwill be set toidentity.The normal matrix of
mis the transpose of the inverse ofm.Please note that, if
thisis an orthogonal matrix or a matrix whose columns are orthogonal vectors, then this method need not be invoked, since in that casethisitself is its normal matrix. In that case, useset3x3(Matrix4x3dc)to set a given Matrix4x3d to only the left 3x3 submatrix of a given matrix.- Specified by:
normalin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
- See Also:
set3x3(Matrix4x3dc)
-
normal
public Matrix3d normal(Matrix3d dest)
Description copied from interface:Matrix4x3dcCompute a normal matrix from the left 3x3 submatrix ofthisand store it intodest.The normal matrix of
mis the transpose of the inverse ofm.- Specified by:
normalin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
cofactor3x3
public Matrix4x3d cofactor3x3()
Compute the cofactor matrix of the left 3x3 submatrix ofthis.The cofactor matrix can be used instead of
normal()to transform normals when the orientation of the normals with respect to the surface should be preserved.- Returns:
- this
-
cofactor3x3
public Matrix3d cofactor3x3(Matrix3d dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthisand store it intodest.The cofactor matrix can be used instead of
normal(Matrix3d)to transform normals when the orientation of the normals with respect to the surface should be preserved.- Specified by:
cofactor3x3in interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
cofactor3x3
public Matrix4x3d cofactor3x3(Matrix4x3d dest)
Compute the cofactor matrix of the left 3x3 submatrix ofthisand store it intodest. All other values ofdestwill be set toidentity.The cofactor matrix can be used instead of
normal(Matrix4x3d)to transform normals when the orientation of the normals with respect to the surface should be preserved.- Specified by:
cofactor3x3in interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
normalize3x3
public Matrix4x3d normalize3x3()
Normalize the left 3x3 submatrix of this matrix.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Returns:
- this
-
normalize3x3
public Matrix4x3d normalize3x3(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcNormalize the left 3x3 submatrix of this matrix and store the result indest.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Specified by:
normalize3x3in interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
normalize3x3
public Matrix3d normalize3x3(Matrix3d dest)
Description copied from interface:Matrix4x3dcNormalize the left 3x3 submatrix of this matrix and store the result indest.The resulting matrix will map unit vectors to unit vectors, though a pair of orthogonal input unit vectors need not be mapped to a pair of orthogonal output vectors if the original matrix was not orthogonal itself (i.e. had skewing).
- Specified by:
normalize3x3in interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
reflect
public Matrix4x3d reflect(double a, double b, double c, double d, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0and store the result indest.The vector
(a, b, c)must be a unit vector.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!Reference: msdn.microsoft.com
- Specified by:
reflectin interfaceMatrix4x3dc- Parameters:
a- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equationdest- will hold the result- Returns:
- dest
-
reflect
public Matrix4x3d reflect(double a, double b, double c, double d)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0.The vector
(a, b, c)must be a unit vector.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!Reference: msdn.microsoft.com
- Parameters:
a- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equation- Returns:
- this
-
reflect
public Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
nx- the x-coordinate of the plane normalny- the y-coordinate of the plane normalnz- the z-coordinate of the plane normalpx- the x-coordinate of a point on the planepy- the y-coordinate of a point on the planepz- the z-coordinate of a point on the plane- Returns:
- this
-
reflect
public Matrix4x3d reflect(double nx, double ny, double nz, double px, double py, double pz, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Specified by:
reflectin interfaceMatrix4x3dc- Parameters:
nx- the x-coordinate of the plane normalny- the y-coordinate of the plane normalnz- the z-coordinate of the plane normalpx- the x-coordinate of a point on the planepy- the y-coordinate of a point on the planepz- the z-coordinate of a point on the planedest- will hold the result- Returns:
- dest
-
reflect
public Matrix4x3d reflect(Vector3dc normal, Vector3dc point)
Apply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
normal- the plane normalpoint- a point on the plane- Returns:
- this
-
reflect
public Matrix4x3d reflect(Quaterniondc orientation, Vector3dc point)
Apply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1). So, if the givenQuaterniondcis the identity (does not apply any additional rotation), the reflection plane will bez=0, offset by the givenpoint.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Parameters:
orientation- the plane orientation relative to an implied normal vector of(0, 0, 1)point- a point on the plane- Returns:
- this
-
reflect
public Matrix4x3d reflect(Quaterniondc orientation, Vector3dc point, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a mirror/reflection transformation to this matrix that reflects about a plane specified via the plane orientation and a point on the plane, and store the result indest.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1). So, if the givenQuaterniondcis the identity (does not apply any additional rotation), the reflection plane will bez=0, offset by the givenpoint.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Specified by:
reflectin interfaceMatrix4x3dc- Parameters:
orientation- the plane orientationpoint- a point on the planedest- will hold the result- Returns:
- dest
-
reflect
public Matrix4x3d reflect(Vector3dc normal, Vector3dc point, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a mirror/reflection transformation to this matrix that reflects about the given plane specified via the plane normal and a point on the plane, and store the result indest.If
Misthismatrix andRthe reflection matrix, then the new matrix will beM * R. So when transforming a vectorvwith the new matrix by usingM * R * v, the reflection will be applied first!- Specified by:
reflectin interfaceMatrix4x3dc- Parameters:
normal- the plane normalpoint- a point on the planedest- will hold the result- Returns:
- dest
-
reflection
public Matrix4x3d reflection(double a, double b, double c, double d)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the equationx*a + y*b + z*c + d = 0.The vector
(a, b, c)must be a unit vector.Reference: msdn.microsoft.com
- Parameters:
a- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equation- Returns:
- this
-
reflection
public Matrix4x3d reflection(double nx, double ny, double nz, double px, double py, double pz)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.- Parameters:
nx- the x-coordinate of the plane normalny- the y-coordinate of the plane normalnz- the z-coordinate of the plane normalpx- the x-coordinate of a point on the planepy- the y-coordinate of a point on the planepz- the z-coordinate of a point on the plane- Returns:
- this
-
reflection
public Matrix4x3d reflection(Vector3dc normal, Vector3dc point)
Set this matrix to a mirror/reflection transformation that reflects about the given plane specified via the plane normal and a point on the plane.- Parameters:
normal- the plane normalpoint- a point on the plane- Returns:
- this
-
reflection
public Matrix4x3d reflection(Quaterniondc orientation, Vector3dc point)
Set this matrix to a mirror/reflection transformation that reflects about a plane specified via the plane orientation and a point on the plane.This method can be used to build a reflection transformation based on the orientation of a mirror object in the scene. It is assumed that the default mirror plane's normal is
(0, 0, 1). So, if the givenQuaterniondcis the identity (does not apply any additional rotation), the reflection plane will bez=0, offset by the givenpoint.- Parameters:
orientation- the plane orientationpoint- a point on the plane- Returns:
- this
-
ortho
public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Specified by:
orthoin interfaceMatrix4x3dc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
- See Also:
setOrtho(double, double, double, double, double, double, boolean)
-
ortho
public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Specified by:
orthoin interfaceMatrix4x3dc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
- See Also:
setOrtho(double, double, double, double, double, double)
-
ortho
public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
Apply an orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setOrtho(double, double, double, double, double, double, boolean)
-
ortho
public Matrix4x3d ortho(double left, double right, double bottom, double top, double zNear, double zFar)
Apply an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
setOrtho(double, double, double, double, double, double)
-
orthoLH
public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Specified by:
orthoLHin interfaceMatrix4x3dc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalsedest- will hold the result- Returns:
- dest
- See Also:
setOrthoLH(double, double, double, double, double, double, boolean)
-
orthoLH
public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, Matrix4x3d dest)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Specified by:
orthoLHin interfaceMatrix4x3dc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
- See Also:
setOrthoLH(double, double, double, double, double, double)
-
orthoLH
public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
Apply an orthographic projection transformation for a left-handed coordiante system using the given NDC z range to this matrix.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setOrthoLH(double, double, double, double, double, double, boolean)
-
orthoLH
public Matrix4x3d orthoLH(double left, double right, double bottom, double top, double zNear, double zFar)
Apply an orthographic projection transformation for a left-handed coordiante system using OpenGL's NDC z range of[-1..+1]to this matrix.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
setOrthoLH(double, double, double, double, double, double)
-
setOrtho
public Matrix4x3d setOrtho(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using the given NDC z range.In order to apply the orthographic projection to an already existing transformation, use
ortho().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
ortho(double, double, double, double, double, double, boolean)
-
setOrtho
public Matrix4x3d setOrtho(double left, double right, double bottom, double top, double zNear, double zFar)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the orthographic projection to an already existing transformation, use
ortho().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
ortho(double, double, double, double, double, double)
-
setOrthoLH
public Matrix4x3d setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar, boolean zZeroToOne)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using the given NDC z range.In order to apply the orthographic projection to an already existing transformation, use
orthoLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
orthoLH(double, double, double, double, double, double, boolean)
-
setOrthoLH
public Matrix4x3d setOrthoLH(double left, double right, double bottom, double top, double zNear, double zFar)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].In order to apply the orthographic projection to an already existing transformation, use
orthoLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgezNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
orthoLH(double, double, double, double, double, double)
-
orthoSymmetric
public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix and store the result indest.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric().Reference: http://www.songho.ca
- Specified by:
orthoSymmetricin interfaceMatrix4x3dc- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
- See Also:
setOrthoSymmetric(double, double, double, double, boolean)
-
orthoSymmetric
public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, Matrix4x3d dest)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric().Reference: http://www.songho.ca
- Specified by:
orthoSymmetricin interfaceMatrix4x3dc- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
- See Also:
setOrthoSymmetric(double, double, double, double)
-
orthoSymmetric
public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range to this matrix.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setOrthoSymmetric(double, double, double, double, boolean)
-
orthoSymmetric
public Matrix4x3d orthoSymmetric(double width, double height, double zNear, double zFar)
Apply a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.This method is equivalent to calling
ortho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetric().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
setOrthoSymmetric(double, double, double, double)
-
orthoSymmetricLH
public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne, Matrix4x3d dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH().Reference: http://www.songho.ca
- Specified by:
orthoSymmetricLHin interfaceMatrix4x3dc- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the resultzZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- dest
- See Also:
setOrthoSymmetricLH(double, double, double, double, boolean)
-
orthoSymmetricLH
public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, Matrix4x3d dest)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH().Reference: http://www.songho.ca
- Specified by:
orthoSymmetricLHin interfaceMatrix4x3dc- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancedest- will hold the result- Returns:
- dest
- See Also:
setOrthoSymmetricLH(double, double, double, double)
-
orthoSymmetricLH
public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range to this matrix.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
setOrthoSymmetricLH(double, double, double, double, boolean)
-
orthoSymmetricLH
public Matrix4x3d orthoSymmetricLH(double width, double height, double zNear, double zFar)
Apply a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1]to this matrix.This method is equivalent to calling
orthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to a symmetric orthographic projection without post-multiplying it, use
setOrthoSymmetricLH().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
setOrthoSymmetricLH(double, double, double, double)
-
setOrthoSymmetric
public Matrix4x3d setOrthoSymmetric(double width, double height, double zNear, double zFar, boolean zZeroToOne)
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using the given NDC z range.This method is equivalent to calling
setOrtho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetric().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
orthoSymmetric(double, double, double, double, boolean)
-
setOrthoSymmetric
public Matrix4x3d setOrthoSymmetric(double width, double height, double zNear, double zFar)
Set this matrix to be a symmetric orthographic projection transformation for a right-handed coordinate system using OpenGL's NDC z range of[-1..+1].This method is equivalent to calling
setOrtho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetric().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
orthoSymmetric(double, double, double, double)
-
setOrthoSymmetricLH
public Matrix4x3d setOrthoSymmetricLH(double width, double height, double zNear, double zFar, boolean zZeroToOne)
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using the given NDC z range.This method is equivalent to calling
setOrtho()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetricLH().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distancezZeroToOne- whether to use Vulkan's and Direct3D's NDC z range of[0..+1]whentrueor whether to use OpenGL's NDC z range of[-1..+1]whenfalse- Returns:
- this
- See Also:
orthoSymmetricLH(double, double, double, double, boolean)
-
setOrthoSymmetricLH
public Matrix4x3d setOrthoSymmetricLH(double width, double height, double zNear, double zFar)
Set this matrix to be a symmetric orthographic projection transformation for a left-handed coordinate system using OpenGL's NDC z range of[-1..+1].This method is equivalent to calling
setOrthoLH()withleft=-width/2,right=+width/2,bottom=-height/2andtop=+height/2.In order to apply the symmetric orthographic projection to an already existing transformation, use
orthoSymmetricLH().Reference: http://www.songho.ca
- Parameters:
width- the distance between the right and left frustum edgesheight- the distance between the top and bottom frustum edgeszNear- near clipping plane distancezFar- far clipping plane distance- Returns:
- this
- See Also:
orthoSymmetricLH(double, double, double, double)
-
ortho2D
public Matrix4x3d ortho2D(double left, double right, double bottom, double top, Matrix4x3d dest)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix and store the result indest.This method is equivalent to calling
ortho()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho().Reference: http://www.songho.ca
- Specified by:
ortho2Din interfaceMatrix4x3dc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgedest- will hold the result- Returns:
- dest
- See Also:
ortho(double, double, double, double, double, double, Matrix4x3d),setOrtho2D(double, double, double, double)
-
ortho2D
public Matrix4x3d ortho2D(double left, double right, double bottom, double top)
Apply an orthographic projection transformation for a right-handed coordinate system to this matrix.This method is equivalent to calling
ortho()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho2D().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
ortho(double, double, double, double, double, double),setOrtho2D(double, double, double, double)
-
ortho2DLH
public Matrix4x3d ortho2DLH(double left, double right, double bottom, double top, Matrix4x3d dest)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix and store the result indest.This method is equivalent to calling
orthoLH()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrthoLH().Reference: http://www.songho.ca
- Specified by:
ortho2DLHin interfaceMatrix4x3dc- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edgedest- will hold the result- Returns:
- dest
- See Also:
orthoLH(double, double, double, double, double, double, Matrix4x3d),setOrtho2DLH(double, double, double, double)
-
ortho2DLH
public Matrix4x3d ortho2DLH(double left, double right, double bottom, double top)
Apply an orthographic projection transformation for a left-handed coordinate system to this matrix.This method is equivalent to calling
orthoLH()withzNear=-1andzFar=+1.If
Misthismatrix andOthe orthographic projection matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the orthographic projection transformation will be applied first!In order to set the matrix to an orthographic projection without post-multiplying it, use
setOrtho2DLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
orthoLH(double, double, double, double, double, double),setOrtho2DLH(double, double, double, double)
-
setOrtho2D
public Matrix4x3d setOrtho2D(double left, double right, double bottom, double top)
Set this matrix to be an orthographic projection transformation for a right-handed coordinate system.This method is equivalent to calling
setOrtho()withzNear=-1andzFar=+1.In order to apply the orthographic projection to an already existing transformation, use
ortho2D().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
setOrtho(double, double, double, double, double, double),ortho2D(double, double, double, double)
-
setOrtho2DLH
public Matrix4x3d setOrtho2DLH(double left, double right, double bottom, double top)
Set this matrix to be an orthographic projection transformation for a left-handed coordinate system.This method is equivalent to calling
setOrthoLH()withzNear=-1andzFar=+1.In order to apply the orthographic projection to an already existing transformation, use
ortho2DLH().Reference: http://www.songho.ca
- Parameters:
left- the distance from the center to the left frustum edgeright- the distance from the center to the right frustum edgebottom- the distance from the center to the bottom frustum edgetop- the distance from the center to the top frustum edge- Returns:
- this
- See Also:
setOrthoLH(double, double, double, double, double, double),ortho2DLH(double, double, double, double)
-
lookAlong
public Matrix4x3d lookAlong(Vector3dc dir, Vector3dc up)
Apply a rotation transformation to this matrix to make-zpoint alongdir.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAtwitheye = (0, 0, 0)andcenter = dir.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong().- Parameters:
dir- the direction in space to look alongup- the direction of 'up'- Returns:
- this
- See Also:
lookAlong(double, double, double, double, double, double),lookAt(Vector3dc, Vector3dc, Vector3dc),setLookAlong(Vector3dc, Vector3dc)
-
lookAlong
public Matrix4x3d lookAlong(Vector3dc dir, Vector3dc up, Matrix4x3d dest)
Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAtwitheye = (0, 0, 0)andcenter = dir.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong().- Specified by:
lookAlongin interfaceMatrix4x3dc- Parameters:
dir- the direction in space to look alongup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAlong(double, double, double, double, double, double),lookAt(Vector3dc, Vector3dc, Vector3dc),setLookAlong(Vector3dc, Vector3dc)
-
lookAlong
public Matrix4x3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)
Apply a rotation transformation to this matrix to make-zpoint alongdirand store the result indest.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt()witheye = (0, 0, 0)andcenter = dir.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()- Specified by:
lookAlongin interfaceMatrix4x3dc- Parameters:
dirX- the x-coordinate of the direction to look alongdirY- the y-coordinate of the direction to look alongdirZ- the z-coordinate of the direction to look alongupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAt(double, double, double, double, double, double, double, double, double),setLookAlong(double, double, double, double, double, double)
-
lookAlong
public Matrix4x3d lookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
Apply a rotation transformation to this matrix to make-zpoint alongdir.If
Misthismatrix andLthe lookalong rotation matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookalong rotation transformation will be applied first!This is equivalent to calling
lookAt()witheye = (0, 0, 0)andcenter = dir.In order to set the matrix to a lookalong transformation without post-multiplying it, use
setLookAlong()- Parameters:
dirX- the x-coordinate of the direction to look alongdirY- the y-coordinate of the direction to look alongdirZ- the z-coordinate of the direction to look alongupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAt(double, double, double, double, double, double, double, double, double),setLookAlong(double, double, double, double, double, double)
-
setLookAlong
public Matrix4x3d setLookAlong(Vector3dc dir, Vector3dc up)
Set this matrix to a rotation transformation to make-zpoint alongdir.This is equivalent to calling
setLookAt()witheye = (0, 0, 0)andcenter = dir.In order to apply the lookalong transformation to any previous existing transformation, use
lookAlong(Vector3dc, Vector3dc).- Parameters:
dir- the direction in space to look alongup- the direction of 'up'- Returns:
- this
- See Also:
setLookAlong(Vector3dc, Vector3dc),lookAlong(Vector3dc, Vector3dc)
-
setLookAlong
public Matrix4x3d setLookAlong(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
Set this matrix to a rotation transformation to make-zpoint alongdir.This is equivalent to calling
setLookAt()witheye = (0, 0, 0)andcenter = dir.In order to apply the lookalong transformation to any previous existing transformation, use
lookAlong()- Parameters:
dirX- the x-coordinate of the direction to look alongdirY- the y-coordinate of the direction to look alongdirZ- the z-coordinate of the direction to look alongupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAlong(double, double, double, double, double, double),lookAlong(double, double, double, double, double, double)
-
setLookAt
public Matrix4x3d setLookAt(Vector3dc eye, Vector3dc center, Vector3dc up)
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-zwithcenter - eye.In order to not make use of vectors to specify
eye,centerandupbut use primitives, like in the GLU function, usesetLookAt()instead.In order to apply the lookat transformation to a previous existing transformation, use
lookAt().- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'- Returns:
- this
- See Also:
setLookAt(double, double, double, double, double, double, double, double, double),lookAt(Vector3dc, Vector3dc, Vector3dc)
-
setLookAt
public Matrix4x3d setLookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
Set this matrix to be a "lookat" transformation for a right-handed coordinate system, that aligns-zwithcenter - eye.In order to apply the lookat transformation to a previous existing transformation, use
lookAt.- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAt(Vector3dc, Vector3dc, Vector3dc),lookAt(double, double, double, double, double, double, double, double, double)
-
lookAt
public Matrix4x3d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt(Vector3dc, Vector3dc, Vector3dc).- Specified by:
lookAtin interfaceMatrix4x3dc- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAt(double, double, double, double, double, double, double, double, double),setLookAlong(Vector3dc, Vector3dc)
-
lookAt
public Matrix4x3d lookAt(Vector3dc eye, Vector3dc center, Vector3dc up)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eye.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt(Vector3dc, Vector3dc, Vector3dc).- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'- Returns:
- this
- See Also:
lookAt(double, double, double, double, double, double, double, double, double),setLookAlong(Vector3dc, Vector3dc)
-
lookAt
public Matrix4x3d lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt().- Specified by:
lookAtin interfaceMatrix4x3dc- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAt(Vector3dc, Vector3dc, Vector3dc),setLookAt(double, double, double, double, double, double, double, double, double)
-
lookAt
public Matrix4x3d lookAt(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
Apply a "lookat" transformation to this matrix for a right-handed coordinate system, that aligns-zwithcenter - eye.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAt().- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAt(Vector3dc, Vector3dc, Vector3dc),setLookAt(double, double, double, double, double, double, double, double, double)
-
setLookAtLH
public Matrix4x3d setLookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up)
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+zwithcenter - eye.In order to not make use of vectors to specify
eye,centerandupbut use primitives, like in the GLU function, usesetLookAtLH()instead.In order to apply the lookat transformation to a previous existing transformation, use
lookAt().- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'- Returns:
- this
- See Also:
setLookAtLH(double, double, double, double, double, double, double, double, double),lookAtLH(Vector3dc, Vector3dc, Vector3dc)
-
setLookAtLH
public Matrix4x3d setLookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
Set this matrix to be a "lookat" transformation for a left-handed coordinate system, that aligns+zwithcenter - eye.In order to apply the lookat transformation to a previous existing transformation, use
lookAtLH.- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
setLookAtLH(Vector3dc, Vector3dc, Vector3dc),lookAtLH(double, double, double, double, double, double, double, double, double)
-
lookAtLH
public Matrix4x3d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up, Matrix4x3d dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH(Vector3dc, Vector3dc, Vector3dc).- Specified by:
lookAtLHin interfaceMatrix4x3dc- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'dest- will hold the result- Returns:
- dest
- See Also:
lookAtLH(double, double, double, double, double, double, double, double, double)
-
lookAtLH
public Matrix4x3d lookAtLH(Vector3dc eye, Vector3dc center, Vector3dc up)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eye.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH(Vector3dc, Vector3dc, Vector3dc).- Parameters:
eye- the position of the cameracenter- the point in space to look atup- the direction of 'up'- Returns:
- this
- See Also:
lookAtLH(double, double, double, double, double, double, double, double, double)
-
lookAtLH
public Matrix4x3d lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ, Matrix4x3d dest)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eyeand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH().- Specified by:
lookAtLHin interfaceMatrix4x3dc- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
lookAtLH(Vector3dc, Vector3dc, Vector3dc),setLookAtLH(double, double, double, double, double, double, double, double, double)
-
lookAtLH
public Matrix4x3d lookAtLH(double eyeX, double eyeY, double eyeZ, double centerX, double centerY, double centerZ, double upX, double upY, double upZ)
Apply a "lookat" transformation to this matrix for a left-handed coordinate system, that aligns+zwithcenter - eye.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a lookat transformation without post-multiplying it, use
setLookAtLH().- Parameters:
eyeX- the x-coordinate of the eye/camera locationeyeY- the y-coordinate of the eye/camera locationeyeZ- the z-coordinate of the eye/camera locationcenterX- the x-coordinate of the point to look atcenterY- the y-coordinate of the point to look atcenterZ- the z-coordinate of the point to look atupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
lookAtLH(Vector3dc, Vector3dc, Vector3dc),setLookAtLH(double, double, double, double, double, double, double, double, double)
-
frustumPlane
public Vector4d frustumPlane(int which, Vector4d dest)
Description copied from interface:Matrix4x3dcCalculate a frustum plane ofthismatrix, which can be a projection matrix or a combined modelview-projection matrix, and store the result in the givendest.Generally, this method computes the frustum plane in the local frame of any coordinate system that existed before
thistransformation was applied to it in order to yield homogeneous clipping space.The plane normal, which is
(a, b, c), is directed "inwards" of the frustum. Any plane/point test usinga*x + b*y + c*z + dtherefore will yield a result greater than zero if the point is within the frustum (i.e. at the positive side of the frustum plane).Reference: Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
- Specified by:
frustumPlanein interfaceMatrix4x3dc- Parameters:
which- one of the six possible planes, given as numeric constantsMatrix4x3dc.PLANE_NX,Matrix4x3dc.PLANE_PX,Matrix4x3dc.PLANE_NY,Matrix4x3dc.PLANE_PY,Matrix4x3dc.PLANE_NZandMatrix4x3dc.PLANE_PZdest- will hold the computed plane equation. The plane equation will be normalized, meaning that(a, b, c)will be a unit vector- Returns:
- dest
-
positiveZ
public Vector3d positiveZ(Vector3d dir)
Description copied from interface:Matrix4x3dcObtain the direction of+Zbefore the transformation represented bythismatrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Zbythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).invert(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Ifthisis already an orthogonal matrix, then consider usingMatrix4x3dc.normalizedPositiveZ(Vector3d)instead.Reference: http://www.euclideanspace.com
- Specified by:
positiveZin interfaceMatrix4x3dc- Parameters:
dir- will hold the direction of+Z- Returns:
- dir
-
normalizedPositiveZ
public Vector3d normalizedPositiveZ(Vector3d dir)
Description copied from interface:Matrix4x3dcObtain the direction of+Zbefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Zbythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).transpose(); inv.transformDirection(dir.set(0, 0, 1)).normalize();
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveZin interfaceMatrix4x3dc- Parameters:
dir- will hold the direction of+Z- Returns:
- dir
-
positiveX
public Vector3d positiveX(Vector3d dir)
Description copied from interface:Matrix4x3dcObtain the direction of+Xbefore the transformation represented bythismatrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Xbythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).invert(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Ifthisis already an orthogonal matrix, then consider usingMatrix4x3dc.normalizedPositiveX(Vector3d)instead.Reference: http://www.euclideanspace.com
- Specified by:
positiveXin interfaceMatrix4x3dc- Parameters:
dir- will hold the direction of+X- Returns:
- dir
-
normalizedPositiveX
public Vector3d normalizedPositiveX(Vector3d dir)
Description copied from interface:Matrix4x3dcObtain the direction of+Xbefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Xbythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).transpose(); inv.transformDirection(dir.set(1, 0, 0)).normalize();
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveXin interfaceMatrix4x3dc- Parameters:
dir- will hold the direction of+X- Returns:
- dir
-
positiveY
public Vector3d positiveY(Vector3d dir)
Description copied from interface:Matrix4x3dcObtain the direction of+Ybefore the transformation represented bythismatrix is applied.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Ybythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).invert(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Ifthisis already an orthogonal matrix, then consider usingMatrix4x3dc.normalizedPositiveY(Vector3d)instead.Reference: http://www.euclideanspace.com
- Specified by:
positiveYin interfaceMatrix4x3dc- Parameters:
dir- will hold the direction of+Y- Returns:
- dir
-
normalizedPositiveY
public Vector3d normalizedPositiveY(Vector3d dir)
Description copied from interface:Matrix4x3dcObtain the direction of+Ybefore the transformation represented bythisorthogonal matrix is applied. This method only produces correct results ifthisis an orthogonal matrix.This method uses the rotation component of the left 3x3 submatrix to obtain the direction that is transformed to
+Ybythismatrix.This method is equivalent to the following code:
Matrix4x3d inv = new Matrix4x3d(this).transpose(); inv.transformDirection(dir.set(0, 1, 0)).normalize();
Reference: http://www.euclideanspace.com
- Specified by:
normalizedPositiveYin interfaceMatrix4x3dc- Parameters:
dir- will hold the direction of+Y- Returns:
- dir
-
origin
public Vector3d origin(Vector3d origin)
Description copied from interface:Matrix4x3dcObtain the position that gets transformed to the origin bythismatrix. This can be used to get the position of the "camera" from a given view transformation matrix.This method is equivalent to the following code:
Matrix4x3f inv = new Matrix4x3f(this).invert(); inv.transformPosition(origin.set(0, 0, 0));
- Specified by:
originin interfaceMatrix4x3dc- Parameters:
origin- will hold the position transformed to the origin- Returns:
- origin
-
shadow
public Matrix4x3d shadow(Vector4dc light, double a, double b, double c, double d)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlight.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
light- the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equation- Returns:
- this
-
shadow
public Matrix4x3d shadow(Vector4dc light, double a, double b, double c, double d, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/directionlightand store the result indest.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Specified by:
shadowin interfaceMatrix4x3dc- Parameters:
light- the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equationdest- will hold the result- Returns:
- dest
-
shadow
public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d)
Apply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW).If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Parameters:
lightX- the x-component of the light's vectorlightY- the y-component of the light's vectorlightZ- the z-component of the light's vectorlightW- the w-component of the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equation- Returns:
- this
-
shadow
public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, double a, double b, double c, double d, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a projection transformation to this matrix that projects onto the plane specified via the general plane equationx*a + y*b + z*c + d = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!Reference: ftp.sgi.com
- Specified by:
shadowin interfaceMatrix4x3dc- Parameters:
lightX- the x-component of the light's vectorlightY- the y-component of the light's vectorlightZ- the z-component of the light's vectorlightW- the w-component of the light's vectora- the x factor in the plane equationb- the y factor in the plane equationc- the z factor in the plane equationd- the constant in the plane equationdest- will hold the result- Returns:
- dest
-
shadow
public Matrix4x3d shadow(Vector4dc light, Matrix4x3dc planeTransform, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlightand store the result indest.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Specified by:
shadowin interfaceMatrix4x3dc- Parameters:
light- the light's vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projectiondest- will hold the result- Returns:
- dest
-
shadow
public Matrix4x3d shadow(Vector4dc light, Matrix4x3dc planeTransform)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/directionlight.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
light.wis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Parameters:
light- the light's vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projection- Returns:
- this
-
shadow
public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW)and store the result indest.Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Specified by:
shadowin interfaceMatrix4x3dc- Parameters:
lightX- the x-component of the light vectorlightY- the y-component of the light vectorlightZ- the z-component of the light vectorlightW- the w-component of the light vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projectiondest- will hold the result- Returns:
- dest
-
shadow
public Matrix4x3d shadow(double lightX, double lightY, double lightZ, double lightW, Matrix4x3dc planeTransform)
Apply a projection transformation to this matrix that projects onto the plane with the general plane equationy = 0as if casting a shadow from a given light position/direction(lightX, lightY, lightZ, lightW).Before the shadow projection is applied, the plane is transformed via the specified
planeTransformation.If
lightWis0.0the light is being treated as a directional light; if it is1.0it is a point light.If
Misthismatrix andSthe shadow matrix, then the new matrix will beM * S. So when transforming a vectorvwith the new matrix by usingM * S * v, the shadow projection will be applied first!- Parameters:
lightX- the x-component of the light vectorlightY- the y-component of the light vectorlightZ- the z-component of the light vectorlightW- the w-component of the light vectorplaneTransform- the transformation to transform the implied planey = 0before applying the projection- Returns:
- this
-
billboardCylindrical
public Matrix4x3d billboardCylindrical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up)
Set this matrix to a cylindrical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPoswhile constraining a cylindrical rotation around the givenupvector.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos.- Parameters:
objPos- the position of the object to rotate towardstargetPostargetPos- the position of the target (for example the camera) towards which to rotate the objectup- the rotation axis (must benormalized)- Returns:
- this
-
billboardSpherical
public Matrix4x3d billboardSpherical(Vector3dc objPos, Vector3dc targetPos, Vector3dc up)
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPos.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos.If preserving an up vector is not necessary when rotating the +Z axis, then a shortest arc rotation can be obtained using
billboardSpherical(Vector3dc, Vector3dc).- Parameters:
objPos- the position of the object to rotate towardstargetPostargetPos- the position of the target (for example the camera) towards which to rotate the objectup- the up axis used to orient the object- Returns:
- this
- See Also:
billboardSpherical(Vector3dc, Vector3dc)
-
billboardSpherical
public Matrix4x3d billboardSpherical(Vector3dc objPos, Vector3dc targetPos)
Set this matrix to a spherical billboard transformation that rotates the local +Z axis of a given object with positionobjPostowards a target position attargetPosusing a shortest arc rotation by not preserving any up vector of the object.This method can be used to create the complete model transformation for a given object, including the translation of the object to its position
objPos.In order to specify an up vector which needs to be maintained when rotating the +Z axis of the object, use
billboardSpherical(Vector3dc, Vector3dc, Vector3dc).- Parameters:
objPos- the position of the object to rotate towardstargetPostargetPos- the position of the target (for example the camera) towards which to rotate the object- Returns:
- this
- See Also:
billboardSpherical(Vector3dc, Vector3dc, Vector3dc)
-
hashCode
public int hashCode()
- Overrides:
hashCodein classjava.lang.Object
-
equals
public boolean equals(java.lang.Object obj)
- Overrides:
equalsin classjava.lang.Object
-
equals
public boolean equals(Matrix4x3dc m, double delta)
Description copied from interface:Matrix4x3dcCompare the matrix elements ofthismatrix with the given matrix using the givendeltaand return whether all of them are equal within a maximum difference ofdelta.Please note that this method is not used by any data structure such as
ArrayListHashSetorHashMapand their operations, such asArrayList.contains(Object)orHashSet.remove(Object), since those data structures only use theObject.equals(Object)andObject.hashCode()methods.- Specified by:
equalsin interfaceMatrix4x3dc- Parameters:
m- the other matrixdelta- the allowed maximum difference- Returns:
truewhether all of the matrix elements are equal;falseotherwise
-
pick
public Matrix4x3d pick(double x, double y, double width, double height, int[] viewport, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates, and store the result indest.- Specified by:
pickin interfaceMatrix4x3dc- Parameters:
x- the x coordinate of the picking region center in window coordinatesy- the y coordinate of the picking region center in window coordinateswidth- the width of the picking region in window coordinatesheight- the height of the picking region in window coordinatesviewport- the viewport described by[x, y, width, height]dest- the destination matrix, which will hold the result- Returns:
- dest
-
pick
public Matrix4x3d pick(double x, double y, double width, double height, int[] viewport)
Apply a picking transformation to this matrix using the given window coordinates(x, y)as the pick center and the given(width, height)as the size of the picking region in window coordinates.- Parameters:
x- the x coordinate of the picking region center in window coordinatesy- the y coordinate of the picking region center in window coordinateswidth- the width of the picking region in window coordinatesheight- the height of the picking region in window coordinatesviewport- the viewport described by[x, y, width, height]- Returns:
- this
-
swap
public Matrix4x3d swap(Matrix4x3d other)
Exchange the values ofthismatrix with the givenothermatrix.- Parameters:
other- the other matrix to exchange the values with- Returns:
- this
-
arcball
public Matrix4x3d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles, and store the result indest.This method is equivalent to calling:
translate(0, 0, -radius, dest).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)- Specified by:
arcballin interfaceMatrix4x3dc- Parameters:
radius- the arcball radiuscenterX- the x coordinate of the center position of the arcballcenterY- the y coordinate of the center position of the arcballcenterZ- the z coordinate of the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radiansdest- will hold the result- Returns:
- dest
-
arcball
public Matrix4x3d arcball(double radius, Vector3dc center, double angleX, double angleY, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcApply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles, and store the result indest.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)- Specified by:
arcballin interfaceMatrix4x3dc- Parameters:
radius- the arcball radiuscenter- the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radiansdest- will hold the result- Returns:
- dest
-
arcball
public Matrix4x3d arcball(double radius, double centerX, double centerY, double centerZ, double angleX, double angleY)
Apply an arcball view transformation to this matrix with the givenradiusand center(centerX, centerY, centerZ)position of the arcball and the specified X and Y rotation angles.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-centerX, -centerY, -centerZ)- Parameters:
radius- the arcball radiuscenterX- the x coordinate of the center position of the arcballcenterY- the y coordinate of the center position of the arcballcenterZ- the z coordinate of the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radians- Returns:
- this
-
arcball
public Matrix4x3d arcball(double radius, Vector3dc center, double angleX, double angleY)
Apply an arcball view transformation to this matrix with the givenradiusandcenterposition of the arcball and the specified X and Y rotation angles.This method is equivalent to calling:
translate(0, 0, -radius).rotateX(angleX).rotateY(angleY).translate(-center.x, -center.y, -center.z)- Parameters:
radius- the arcball radiuscenter- the center position of the arcballangleX- the rotation angle around the X axis in radiansangleY- the rotation angle around the Y axis in radians- Returns:
- this
-
transformAab
public Matrix4x3d transformAab(double minX, double minY, double minZ, double maxX, double maxY, double maxZ, Vector3d outMin, Vector3d outMax)
Description copied from interface:Matrix4x3dcTransform the axis-aligned box given as the minimum corner(minX, minY, minZ)and maximum corner(maxX, maxY, maxZ)bythismatrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.Reference: http://dev.theomader.com
- Specified by:
transformAabin interfaceMatrix4x3dc- Parameters:
minX- the x coordinate of the minimum corner of the axis-aligned boxminY- the y coordinate of the minimum corner of the axis-aligned boxminZ- the z coordinate of the minimum corner of the axis-aligned boxmaxX- the x coordinate of the maximum corner of the axis-aligned boxmaxY- the y coordinate of the maximum corner of the axis-aligned boxmaxZ- the y coordinate of the maximum corner of the axis-aligned boxoutMin- will hold the minimum corner of the resulting axis-aligned boxoutMax- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
transformAab
public Matrix4x3d transformAab(Vector3dc min, Vector3dc max, Vector3d outMin, Vector3d outMax)
Description copied from interface:Matrix4x3dcTransform the axis-aligned box given as the minimum cornerminand maximum cornermaxbythismatrix and compute the axis-aligned box of the result whose minimum corner is stored inoutMinand maximum corner stored inoutMax.- Specified by:
transformAabin interfaceMatrix4x3dc- Parameters:
min- the minimum corner of the axis-aligned boxmax- the maximum corner of the axis-aligned boxoutMin- will hold the minimum corner of the resulting axis-aligned boxoutMax- will hold the maximum corner of the resulting axis-aligned box- Returns:
- this
-
lerp
public Matrix4x3d lerp(Matrix4x3dc other, double t)
Linearly interpolatethisandotherusing the given interpolation factortand store the result inthis.If
tis0.0then the result isthis. If the interpolation factor is1.0then the result isother.- Parameters:
other- the other matrixt- the interpolation factor between 0.0 and 1.0- Returns:
- this
-
lerp
public Matrix4x3d lerp(Matrix4x3dc other, double t, Matrix4x3d dest)
Description copied from interface:Matrix4x3dcLinearly interpolatethisandotherusing the given interpolation factortand store the result indest.If
tis0.0then the result isthis. If the interpolation factor is1.0then the result isother.- Specified by:
lerpin interfaceMatrix4x3dc- Parameters:
other- the other matrixt- the interpolation factor between 0.0 and 1.0dest- will hold the result- Returns:
- dest
-
rotateTowards
public Matrix4x3d rotateTowards(Vector3dc dir, Vector3dc up, Matrix4x3d dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdirand store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards().This method is equivalent to calling:
mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert(), dest)- Specified by:
rotateTowardsin interfaceMatrix4x3dc- Parameters:
dir- the direction to rotate towardsup- the up vectordest- will hold the result- Returns:
- dest
- See Also:
rotateTowards(double, double, double, double, double, double, Matrix4x3d),rotationTowards(Vector3dc, Vector3dc)
-
rotateTowards
public Matrix4x3d rotateTowards(Vector3dc dir, Vector3dc up)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis withdir.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards().This method is equivalent to calling:
mul(new Matrix4x3d().lookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert())- Parameters:
dir- the direction to orient towardsup- the up vector- Returns:
- this
- See Also:
rotateTowards(double, double, double, double, double, double),rotationTowards(Vector3dc, Vector3dc)
-
rotateTowards
public Matrix4x3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis with(dirX, dirY, dirZ).If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards().This method is equivalent to calling:
mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert())- Parameters:
dirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
rotateTowards(Vector3dc, Vector3dc),rotationTowards(double, double, double, double, double, double)
-
rotateTowards
public Matrix4x3d rotateTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ, Matrix4x3d dest)
Apply a model transformation to this matrix for a right-handed coordinate system, that aligns the local+Zaxis with(dirX, dirY, dirZ)and store the result indest.If
Misthismatrix andLthe lookat matrix, then the new matrix will beM * L. So when transforming a vectorvwith the new matrix by usingM * L * v, the lookat transformation will be applied first!In order to set the matrix to a rotation transformation without post-multiplying it, use
rotationTowards().This method is equivalent to calling:
mul(new Matrix4x3d().lookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert(), dest)- Specified by:
rotateTowardsin interfaceMatrix4x3dc- Parameters:
dirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vectordest- will hold the result- Returns:
- dest
- See Also:
rotateTowards(Vector3dc, Vector3dc),rotationTowards(double, double, double, double, double, double)
-
rotationTowards
public Matrix4x3d rotationTowards(Vector3dc dir, Vector3dc up)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-zaxis withdir.In order to apply the rotation transformation to a previous existing transformation, use
rotateTowards.This method is equivalent to calling:
setLookAt(new Vector3d(), new Vector3d(dir).negate(), up).invert()- Parameters:
dir- the direction to orient the local -z axis towardsup- the up vector- Returns:
- this
- See Also:
rotationTowards(Vector3dc, Vector3dc),rotateTowards(double, double, double, double, double, double)
-
rotationTowards
public Matrix4x3d rotationTowards(double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that aligns the local-zaxis with(dirX, dirY, dirZ).In order to apply the rotation transformation to a previous existing transformation, use
rotateTowards.This method is equivalent to calling:
setLookAt(0, 0, 0, -dirX, -dirY, -dirZ, upX, upY, upZ).invert()- Parameters:
dirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
rotateTowards(Vector3dc, Vector3dc),rotationTowards(double, double, double, double, double, double)
-
translationRotateTowards
public Matrix4x3d translationRotateTowards(Vector3dc pos, Vector3dc dir, Vector3dc up)
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the givenposand aligns the local-zaxis withdir.This method is equivalent to calling:
translation(pos).rotateTowards(dir, up)- Parameters:
pos- the position to translate todir- the direction to rotate towardsup- the up vector- Returns:
- this
- See Also:
translation(Vector3dc),rotateTowards(Vector3dc, Vector3dc)
-
translationRotateTowards
public Matrix4x3d translationRotateTowards(double posX, double posY, double posZ, double dirX, double dirY, double dirZ, double upX, double upY, double upZ)
Set this matrix to a model transformation for a right-handed coordinate system, that translates to the given(posX, posY, posZ)and aligns the local-zaxis with(dirX, dirY, dirZ).This method is equivalent to calling:
translation(posX, posY, posZ).rotateTowards(dirX, dirY, dirZ, upX, upY, upZ)- Parameters:
posX- the x-coordinate of the position to translate toposY- the y-coordinate of the position to translate toposZ- the z-coordinate of the position to translate todirX- the x-coordinate of the direction to rotate towardsdirY- the y-coordinate of the direction to rotate towardsdirZ- the z-coordinate of the direction to rotate towardsupX- the x-coordinate of the up vectorupY- the y-coordinate of the up vectorupZ- the z-coordinate of the up vector- Returns:
- this
- See Also:
translation(double, double, double),rotateTowards(double, double, double, double, double, double)
-
getEulerAnglesZYX
public Vector3d getEulerAnglesZYX(Vector3d dest)
Description copied from interface:Matrix4x3dcExtract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.This method assumes that the left 3x3 submatrix of
thisonly represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3d.xfield, the angle around Y in theVector3d.yfield and the angle around Z in theVector3d.zfield of the supplied vector.Note that the returned Euler angles must be applied in the order
Z * Y * Xto obtain the identical matrix. This means that callingrotateZYX(double, double, double)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix4x3d m = ...; // <- matrix only representing rotation Matrix4x3d n = new Matrix4x3d(); n.rotateZYX(m.getEulerAnglesZYX(new Vector3d()));
Reference: http://en.wikipedia.org/
- Specified by:
getEulerAnglesZYXin interfaceMatrix4x3dc- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesXYZ
public Vector3d getEulerAnglesXYZ(Vector3d dest)
Description copied from interface:Matrix4x3dcExtract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.This method assumes that the left 3x3 submatrix of
thisonly represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3d.xfield, the angle around Y in theVector3d.yfield and the angle around Z in theVector3d.zfield of the supplied vector.Note that the returned Euler angles must be applied in the order
X * Y * Zto obtain the identical matrix. This means that callingrotateXYZ(double, double, double)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix4x3d m = ...; // <- matrix only representing rotation Matrix4x3d n = new Matrix4x3d(); n.rotateXYZ(m.getEulerAnglesXYZ(new Vector3d()));
Reference: http://en.wikipedia.org/
- Specified by:
getEulerAnglesXYZin interfaceMatrix4x3dc- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
getEulerAnglesYXZ
public Vector3d getEulerAnglesYXZ(Vector3d dest)
Description copied from interface:Matrix4x3dcExtract the Euler angles from the rotation represented by the left 3x3 submatrix ofthisand store the extracted Euler angles indest.This method assumes that the left 3x3 submatrix of
thisonly represents a rotation without scaling.The Euler angles are always returned as the angle around X in the
Vector3d.xfield, the angle around Y in theVector3d.yfield and the angle around Z in theVector3d.zfield of the supplied vector.Note that the returned Euler angles must be applied in the order
Y * X * Zto obtain the identical matrix. This means that callingrotateYXZ(double, double, double)using the obtained Euler angles will yield the same rotation as the original matrix from which the Euler angles were obtained, so in the below code the matrixm2should be identical tom(disregarding possible floating-point inaccuracies).Matrix4x3d m = ...; // <- matrix only representing rotation Matrix4x3d n = new Matrix4x3d(); n.rotateYXZ(m.getEulerAnglesYXZ(new Vector3d()));
Reference: http://en.wikipedia.org/
- Specified by:
getEulerAnglesYXZin interfaceMatrix4x3dc- Parameters:
dest- will hold the extracted Euler angles- Returns:
- dest
-
obliqueZ
public Matrix4x3d obliqueZ(double a, double b)
Apply an oblique projection transformation to this matrix with the given values foraandb.If
Misthismatrix andOthe oblique transformation matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 0 1 b 0 0 0 1 0
- Parameters:
a- the value for the z factor that applies to xb- the value for the z factor that applies to y- Returns:
- this
-
obliqueZ
public Matrix4x3d obliqueZ(double a, double b, Matrix4x3d dest)
Apply an oblique projection transformation to this matrix with the given values foraandband store the result indest.If
Misthismatrix andOthe oblique transformation matrix, then the new matrix will beM * O. So when transforming a vectorvwith the new matrix by usingM * O * v, the oblique transformation will be applied first!The oblique transformation is defined as:
x' = x + a*z y' = y + a*z z' = z
or in matrix form:1 0 a 0 0 1 b 0 0 0 1 0
- Specified by:
obliqueZin interfaceMatrix4x3dc- Parameters:
a- the value for the z factor that applies to xb- the value for the z factor that applies to ydest- will hold the result- Returns:
- dest
-
mapXZY
public Matrix4x3d mapXZY()
Multiplythisby the matrix1 0 0 0 0 0 1 0 0 1 0 0
- Returns:
- this
-
mapXZY
public Matrix4x3d mapXZY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix1 0 0 0 0 0 1 0 0 1 0 0
and store the result indest.- Specified by:
mapXZYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXZnY
public Matrix4x3d mapXZnY()
Multiplythisby the matrix1 0 0 0 0 0 -1 0 0 1 0 0
- Returns:
- this
-
mapXZnY
public Matrix4x3d mapXZnY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix1 0 0 0 0 0 -1 0 0 1 0 0
and store the result indest.- Specified by:
mapXZnYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnYnZ
public Matrix4x3d mapXnYnZ()
Multiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 -1 0
- Returns:
- this
-
mapXnYnZ
public Matrix4x3d mapXnYnZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 -1 0
and store the result indest.- Specified by:
mapXnYnZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnZY
public Matrix4x3d mapXnZY()
Multiplythisby the matrix1 0 0 0 0 0 1 0 0 -1 0 0
- Returns:
- this
-
mapXnZY
public Matrix4x3d mapXnZY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix1 0 0 0 0 0 1 0 0 -1 0 0
and store the result indest.- Specified by:
mapXnZYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapXnZnY
public Matrix4x3d mapXnZnY()
Multiplythisby the matrix1 0 0 0 0 0 -1 0 0 -1 0 0
- Returns:
- this
-
mapXnZnY
public Matrix4x3d mapXnZnY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix1 0 0 0 0 0 -1 0 0 -1 0 0
and store the result indest.- Specified by:
mapXnZnYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYXZ
public Matrix4x3d mapYXZ()
Multiplythisby the matrix0 1 0 0 1 0 0 0 0 0 1 0
- Returns:
- this
-
mapYXZ
public Matrix4x3d mapYXZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 1 0 0 1 0 0 0 0 0 1 0
and store the result indest.- Specified by:
mapYXZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYXnZ
public Matrix4x3d mapYXnZ()
Multiplythisby the matrix0 1 0 0 1 0 0 0 0 0 -1 0
- Returns:
- this
-
mapYXnZ
public Matrix4x3d mapYXnZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 1 0 0 1 0 0 0 0 0 -1 0
and store the result indest.- Specified by:
mapYXnZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYZX
public Matrix4x3d mapYZX()
Multiplythisby the matrix0 0 1 0 1 0 0 0 0 1 0 0
- Returns:
- this
-
mapYZX
public Matrix4x3d mapYZX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 1 0 1 0 0 0 0 1 0 0
and store the result indest.- Specified by:
mapYZXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYZnX
public Matrix4x3d mapYZnX()
Multiplythisby the matrix0 0 -1 0 1 0 0 0 0 1 0 0
- Returns:
- this
-
mapYZnX
public Matrix4x3d mapYZnX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 -1 0 1 0 0 0 0 1 0 0
and store the result indest.- Specified by:
mapYZnXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnXZ
public Matrix4x3d mapYnXZ()
Multiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 1 0
- Returns:
- this
-
mapYnXZ
public Matrix4x3d mapYnXZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 1 0
and store the result indest.- Specified by:
mapYnXZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnXnZ
public Matrix4x3d mapYnXnZ()
Multiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 -1 0
- Returns:
- this
-
mapYnXnZ
public Matrix4x3d mapYnXnZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 -1 0 0 1 0 0 0 0 0 -1 0
and store the result indest.- Specified by:
mapYnXnZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnZX
public Matrix4x3d mapYnZX()
Multiplythisby the matrix0 0 1 0 1 0 0 0 0 -1 0 0
- Returns:
- this
-
mapYnZX
public Matrix4x3d mapYnZX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 1 0 1 0 0 0 0 -1 0 0
and store the result indest.- Specified by:
mapYnZXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapYnZnX
public Matrix4x3d mapYnZnX()
Multiplythisby the matrix0 0 -1 0 1 0 0 0 0 -1 0 0
- Returns:
- this
-
mapYnZnX
public Matrix4x3d mapYnZnX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 -1 0 1 0 0 0 0 -1 0 0
and store the result indest.- Specified by:
mapYnZnXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZXY
public Matrix4x3d mapZXY()
Multiplythisby the matrix0 1 0 0 0 0 1 0 1 0 0 0
- Returns:
- this
-
mapZXY
public Matrix4x3d mapZXY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 1 0 0 0 0 1 0 1 0 0 0
and store the result indest.- Specified by:
mapZXYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZXnY
public Matrix4x3d mapZXnY()
Multiplythisby the matrix0 1 0 0 0 0 -1 0 1 0 0 0
- Returns:
- this
-
mapZXnY
public Matrix4x3d mapZXnY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 1 0 0 0 0 -1 0 1 0 0 0
and store the result indest.- Specified by:
mapZXnYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZYX
public Matrix4x3d mapZYX()
Multiplythisby the matrix0 0 1 0 0 1 0 0 1 0 0 0
- Returns:
- this
-
mapZYX
public Matrix4x3d mapZYX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 1 0 0 1 0 0 1 0 0 0
and store the result indest.- Specified by:
mapZYXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZYnX
public Matrix4x3d mapZYnX()
Multiplythisby the matrix0 0 -1 0 0 1 0 0 1 0 0 0
- Returns:
- this
-
mapZYnX
public Matrix4x3d mapZYnX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 -1 0 0 1 0 0 1 0 0 0
and store the result indest.- Specified by:
mapZYnXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnXY
public Matrix4x3d mapZnXY()
Multiplythisby the matrix0 -1 0 0 0 0 1 0 1 0 0 0
- Returns:
- this
-
mapZnXY
public Matrix4x3d mapZnXY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 -1 0 0 0 0 1 0 1 0 0 0
and store the result indest.- Specified by:
mapZnXYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnXnY
public Matrix4x3d mapZnXnY()
Multiplythisby the matrix0 -1 0 0 0 0 -1 0 1 0 0 0
- Returns:
- this
-
mapZnXnY
public Matrix4x3d mapZnXnY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 -1 0 0 0 0 -1 0 1 0 0 0
and store the result indest.- Specified by:
mapZnXnYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnYX
public Matrix4x3d mapZnYX()
Multiplythisby the matrix0 0 1 0 0 -1 0 0 1 0 0 0
- Returns:
- this
-
mapZnYX
public Matrix4x3d mapZnYX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 1 0 0 -1 0 0 1 0 0 0
and store the result indest.- Specified by:
mapZnYXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapZnYnX
public Matrix4x3d mapZnYnX()
Multiplythisby the matrix0 0 -1 0 0 -1 0 0 1 0 0 0
- Returns:
- this
-
mapZnYnX
public Matrix4x3d mapZnYnX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 -1 0 0 -1 0 0 1 0 0 0
and store the result indest.- Specified by:
mapZnYnXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXYnZ
public Matrix4x3d mapnXYnZ()
Multiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 -1 0
- Returns:
- this
-
mapnXYnZ
public Matrix4x3d mapnXYnZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 -1 0
and store the result indest.- Specified by:
mapnXYnZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXZY
public Matrix4x3d mapnXZY()
Multiplythisby the matrix-1 0 0 0 0 0 1 0 0 1 0 0
- Returns:
- this
-
mapnXZY
public Matrix4x3d mapnXZY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix-1 0 0 0 0 0 1 0 0 1 0 0
and store the result indest.- Specified by:
mapnXZYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXZnY
public Matrix4x3d mapnXZnY()
Multiplythisby the matrix-1 0 0 0 0 0 -1 0 0 1 0 0
- Returns:
- this
-
mapnXZnY
public Matrix4x3d mapnXZnY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix-1 0 0 0 0 0 -1 0 0 1 0 0
and store the result indest.- Specified by:
mapnXZnYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnYZ
public Matrix4x3d mapnXnYZ()
Multiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 1 0
- Returns:
- this
-
mapnXnYZ
public Matrix4x3d mapnXnYZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 1 0
and store the result indest.- Specified by:
mapnXnYZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnYnZ
public Matrix4x3d mapnXnYnZ()
Multiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 -1 0
- Returns:
- this
-
mapnXnYnZ
public Matrix4x3d mapnXnYnZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix-1 0 0 0 0 -1 0 0 0 0 -1 0
and store the result indest.- Specified by:
mapnXnYnZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnZY
public Matrix4x3d mapnXnZY()
Multiplythisby the matrix-1 0 0 0 0 0 1 0 0 -1 0 0
- Returns:
- this
-
mapnXnZY
public Matrix4x3d mapnXnZY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix-1 0 0 0 0 0 1 0 0 -1 0 0
and store the result indest.- Specified by:
mapnXnZYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnXnZnY
public Matrix4x3d mapnXnZnY()
Multiplythisby the matrix-1 0 0 0 0 0 -1 0 0 -1 0 0
- Returns:
- this
-
mapnXnZnY
public Matrix4x3d mapnXnZnY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix-1 0 0 0 0 0 -1 0 0 -1 0 0
and store the result indest.- Specified by:
mapnXnZnYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYXZ
public Matrix4x3d mapnYXZ()
Multiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 1 0
- Returns:
- this
-
mapnYXZ
public Matrix4x3d mapnYXZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 1 0
and store the result indest.- Specified by:
mapnYXZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYXnZ
public Matrix4x3d mapnYXnZ()
Multiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 -1 0
- Returns:
- this
-
mapnYXnZ
public Matrix4x3d mapnYXnZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 1 0 0 -1 0 0 0 0 0 -1 0
and store the result indest.- Specified by:
mapnYXnZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYZX
public Matrix4x3d mapnYZX()
Multiplythisby the matrix0 0 1 0 -1 0 0 0 0 1 0 0
- Returns:
- this
-
mapnYZX
public Matrix4x3d mapnYZX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 1 0 -1 0 0 0 0 1 0 0
and store the result indest.- Specified by:
mapnYZXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYZnX
public Matrix4x3d mapnYZnX()
Multiplythisby the matrix0 0 -1 0 -1 0 0 0 0 1 0 0
- Returns:
- this
-
mapnYZnX
public Matrix4x3d mapnYZnX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 -1 0 -1 0 0 0 0 1 0 0
and store the result indest.- Specified by:
mapnYZnXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnXZ
public Matrix4x3d mapnYnXZ()
Multiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 1 0
- Returns:
- this
-
mapnYnXZ
public Matrix4x3d mapnYnXZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 1 0
and store the result indest.- Specified by:
mapnYnXZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnXnZ
public Matrix4x3d mapnYnXnZ()
Multiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 -1 0
- Returns:
- this
-
mapnYnXnZ
public Matrix4x3d mapnYnXnZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 -1 0 0 -1 0 0 0 0 0 -1 0
and store the result indest.- Specified by:
mapnYnXnZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnZX
public Matrix4x3d mapnYnZX()
Multiplythisby the matrix0 0 1 0 -1 0 0 0 0 -1 0 0
- Returns:
- this
-
mapnYnZX
public Matrix4x3d mapnYnZX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 1 0 -1 0 0 0 0 -1 0 0
and store the result indest.- Specified by:
mapnYnZXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnYnZnX
public Matrix4x3d mapnYnZnX()
Multiplythisby the matrix0 0 -1 0 -1 0 0 0 0 -1 0 0
- Returns:
- this
-
mapnYnZnX
public Matrix4x3d mapnYnZnX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 -1 0 -1 0 0 0 0 -1 0 0
and store the result indest.- Specified by:
mapnYnZnXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZXY
public Matrix4x3d mapnZXY()
Multiplythisby the matrix0 1 0 0 0 0 1 0 -1 0 0 0
- Returns:
- this
-
mapnZXY
public Matrix4x3d mapnZXY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 1 0 0 0 0 1 0 -1 0 0 0
and store the result indest.- Specified by:
mapnZXYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZXnY
public Matrix4x3d mapnZXnY()
Multiplythisby the matrix0 1 0 0 0 0 -1 0 -1 0 0 0
- Returns:
- this
-
mapnZXnY
public Matrix4x3d mapnZXnY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 1 0 0 0 0 -1 0 -1 0 0 0
and store the result indest.- Specified by:
mapnZXnYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZYX
public Matrix4x3d mapnZYX()
Multiplythisby the matrix0 0 1 0 0 1 0 0 -1 0 0 0
- Returns:
- this
-
mapnZYX
public Matrix4x3d mapnZYX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 1 0 0 1 0 0 -1 0 0 0
and store the result indest.- Specified by:
mapnZYXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZYnX
public Matrix4x3d mapnZYnX()
Multiplythisby the matrix0 0 -1 0 0 1 0 0 -1 0 0 0
- Returns:
- this
-
mapnZYnX
public Matrix4x3d mapnZYnX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 -1 0 0 1 0 0 -1 0 0 0
and store the result indest.- Specified by:
mapnZYnXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnXY
public Matrix4x3d mapnZnXY()
Multiplythisby the matrix0 -1 0 0 0 0 1 0 -1 0 0 0
- Returns:
- this
-
mapnZnXY
public Matrix4x3d mapnZnXY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 -1 0 0 0 0 1 0 -1 0 0 0
and store the result indest.- Specified by:
mapnZnXYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnXnY
public Matrix4x3d mapnZnXnY()
Multiplythisby the matrix0 -1 0 0 0 0 -1 0 -1 0 0 0
- Returns:
- this
-
mapnZnXnY
public Matrix4x3d mapnZnXnY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 -1 0 0 0 0 -1 0 -1 0 0 0
and store the result indest.- Specified by:
mapnZnXnYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnYX
public Matrix4x3d mapnZnYX()
Multiplythisby the matrix0 0 1 0 0 -1 0 0 -1 0 0 0
- Returns:
- this
-
mapnZnYX
public Matrix4x3d mapnZnYX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 1 0 0 -1 0 0 -1 0 0 0
and store the result indest.- Specified by:
mapnZnYXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
mapnZnYnX
public Matrix4x3d mapnZnYnX()
Multiplythisby the matrix0 0 -1 0 0 -1 0 0 -1 0 0 0
- Returns:
- this
-
mapnZnYnX
public Matrix4x3d mapnZnYnX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix0 0 -1 0 0 -1 0 0 -1 0 0 0
and store the result indest.- Specified by:
mapnZnYnXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
negateX
public Matrix4x3d negateX()
Multiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 1 0
- Returns:
- this
-
negateX
public Matrix4x3d negateX(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix-1 0 0 0 0 1 0 0 0 0 1 0
and store the result indest.- Specified by:
negateXin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
negateY
public Matrix4x3d negateY()
Multiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 1 0
- Returns:
- this
-
negateY
public Matrix4x3d negateY(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix1 0 0 0 0 -1 0 0 0 0 1 0
and store the result indest.- Specified by:
negateYin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
negateZ
public Matrix4x3d negateZ()
Multiplythisby the matrix1 0 0 0 0 1 0 0 0 0 -1 0
- Returns:
- this
-
negateZ
public Matrix4x3d negateZ(Matrix4x3d dest)
Description copied from interface:Matrix4x3dcMultiplythisby the matrix1 0 0 0 0 1 0 0 0 0 -1 0
and store the result indest.- Specified by:
negateZin interfaceMatrix4x3dc- Parameters:
dest- will hold the result- Returns:
- dest
-
isFinite
public boolean isFinite()
Description copied from interface:Matrix4x3dcDetermine whether all matrix elements are finite floating-point values, that is, they are notNaNand notinfinity.- Specified by:
isFinitein interfaceMatrix4x3dc- Returns:
trueif all components are finite floating-point values;falseotherwise
-
clone
public java.lang.Object clone() throws java.lang.CloneNotSupportedException- Overrides:
clonein classjava.lang.Object- Throws:
java.lang.CloneNotSupportedException
-
-